995 resultados para equivalent circuit synthesis
Resumo:
This text discusses about advantageous, powerful and limitations of admittance and dielectric spectroscopy in the characterization of polycrystalline semiconductors. In the context of polycrystalline semiconductors or dielectric materials, the admittance or dielectric frequency response analyses are shown to be sometimes more useful than impedance spectra analysis, mainly because information on the capacitances or deep trap states are possible to be monitored from admittance or dielectric spectra as a function of dopant concentration or annealing effects. The majority of examples of the application of admittance or dielectric analysis approach were here based on SnO2- and ZnO-based polycrystalline semiconductors devices presenting nonohmic properties. Examples of how to perform the characterization of Schottky barrier in such devices are clearly depicted. The approach is based on findings of the true Mott-Schottky pattern of the barrier by extracting the grain boundary capacitance value from complex capacitance diagram analysis. The equivalent circuit of such kind of devices is mainly consistent with the existence of three parallel elements: the high-frequency limit related to grain boundary capacitances, the complex incremental capacitance at intermediate frequency related to the deep trap relaxation and finally at low frequency region the manifestation of the conductance term representing the dc conductance of the multi-junction device. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The behaviors of an arc-shaped stator induction machine (the sector-motor) and a disc-secondary linear induction motor are analyzed in this work for different values of the frequency. Variable frequency is produced by a voltage source controlled-current inverter which keeps constant the r.m.s. value of the phase current, also assuring a sinusoidal waveform. For the simulations of the machine developed thrust, an equivalent circuit is used. It is obtained through the application of the one-dimensional theory to the modeling. The circuit parameters take into account the end effects, always present is these kind of machines. The phase current waveforms are analyzed for their harmonic contents. Experimental measurements were carried out in laboratory and are presented with the simulations, for comparison.
Resumo:
A novel fractal model for grain boundary regions of ceramic materials was developed. The model considers laterally inhomogeneous distribution of charge carriers in the vicinity of grain boundaries as the main cause of the non-Debye behaviour and distribution of relaxation times in ceramic materials. Considering the equivalent circuit the impedance of the grain boundary region was expressed. It was shown that the impedance of the grain boundary region has the form of the Davidson-Cole equation. The fractal dimension of the inhomogeneous distribution of charge carriers in the region close to the grain boundaries could be calculated based on the relation ds = 1 + β, where β is the constant from the Davidson-Cole equation.
Resumo:
This paper proposes to use a state-space technique to represent a frequency dependent line for simulating electromagnetic transients directly in time domain. The distributed nature of the line is represented by a multiple 1t section network made up of the lumped parameters and the frequency dependence of the per unit longitudinal parameters is matched by using a rational function. The rational function is represented by its equivalent circuit with passive elements. This passive circuit is then inserted in each 1t circuit of the cascade that represents the line. Because the system is very sparse, it is possible to use a sparsity technique to store only nonzero elements of this matrix for saving space and running time. The model was used to simulate the energization process of a 10 km length single-phase line. ©2008 IEEE.
Resumo:
Electrochemical analyses on confined electroactive molecular layers, herein exemplified with electroactive self-assembled monolayers, sample current contributions that are significantly influenced by additional nonfaradaic and uncompensated resistance effects that, though unresolved, can strongly distort redox analysis. Prior work has shown that impedance-derived capacitance spectroscopy approaches can cleanly resolve all contributions generated at such films, including those which are related to the layer dipolar/electrostatic relaxation characteristics. We show herein that, in isolating the faradaic and nonfaradaic contributions present within an improved equivalent circuit description of such interfaces, it is possible to accurately simulate subsequently observed cyclic voltammograms (that is, generated current versus potential patterns map accurately onto frequency domain measurements). Not only does this enable a frequency-resolved quantification of all components present, and in so doing, a full validation of the equivalent circuit model utilized, but also facilitates the generation of background subtracted cyclic voltammograms remarkably free from all but faradaic contributions. © 2012 American Chemical Society.
Resumo:
Canine distemper virus (CDV) is a viral disease that affects dogs and many other carnivores. Clinical diagnosis of CDV is difficult due to the broad spectrum of signs that may be confounded with other respiratory and enteric diseases of dogs. Laboratory analysis is required to diagnose suspected cases. In this study, surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) methodologies were developed for the detection of canine distemper virus simultaneously. The assay exhibited high specificity, as all the negative controls were not mistakenly detected. The CDV concentration was determined from successive injections into the apparatus, with a linear range from 1.1 to 116.0 ng mL-1. The system exhibited good reproducibility with 4.5% variation between runs after regeneration of the coated surface with a solution of 0.1 M glycine-HCL (pH 3.0). The capacitance and resistance values of the modified interface were calculated from EIS data using an equivalent circuit. It was possible to measure CDV in highly concentrated viruses with good specificity and reproducibility. © 2013 The Royal Society of Chemistry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of layer-by-layer films of polyaniline and Ni-tetrasulfonated phthalocyanine (PANI/Ni-TS-Pc) on the electrical performance of polymeric light-emitting diodes (PLED) made from (poly[2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene]) (MEH-PPV) is investigated by using current versus voltage measurements and impedance spectroscopy. The PLED is composed by a thin layer of MEH-PPV sandwiched between indium tin oxide (ITO) and aluminum electrodes, resulting in the device structure ITO/(PANI/Ni-TS-Pc)(n)/MEH-PPV/Al, where n stands for the number of PANI/Ni-TS-Pc bilayers. The deposition of PANI/Ni-TS-Pc leads to a decrease in the driving voltage of the PLEDs, which reaches a minimum when n = 5 bilayers. In addition, impedance spectroscopy data reveal that the PLED impedance decreases as more PANI/Ni-TS-Pc bilayers are deposited. The PLED structure is further described by an equivalent circuit composed by two R-C combinations, one for the bulk and other for the interface components, in series with a resistance originated in the ITO contact. From the impedance curves, the values for each circuit element is determined and it is found that both, bulk and interface resistances are decreased upon PANI/Ni-TS-Pc deposition. The results indicate that PANI/NiTS-Pc films reduce the contact resistance at ITO/MEH-PPV interface, and for that reason improve the hole-injection within the PLED structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.