946 resultados para equine renal capsule


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne viral disease characterized by fever, hemorrhagic, kidney damage and hypotension, is caused by different species of hantaviruses [1]. Every year, HFRS affects thousands of people in Asia, and more than 90% of these cases are reported in China [2, 3]. Due to its high fatality, HFRS has attracted considerable research attention, and prior studies have predominantly focused on quantifying HFRS morbidity [4], identifying high risk areas [5] and populations [6], or exploring peak time of HFRS occurrence [3]. To date, no study has assessed the seasonal amplitude of HFRS in China, even though it reveals the seasonal fluctuation and thus may provide pivotal information on the possibility of HFRS outbreaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance (IR). Laminitis, failure of the weight-bearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs) responsible for glucose uptake, are central to the dysregulation of glucose metabolism and may play a role in laminitis pathophysiology. OBJECTIVES We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during hyperinsulinaemia. STUDY DESIGN Randomised, controlled study. METHODS Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged-euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged-glucose infusion (p-GI) and results were compared to electrolyte-treated controls. GLUT protein expression was examined with immunoblotting. RESULTS Lamellar tissue contained more GLUT1 protein than skeletal muscle (p = 0.002) and less GLUT4 than the heart (p = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the p-EHC), GLUT1 protein expression was decreased in skeletal muscle (p = 0.029) but unchanged in the lamellae, while novel GLUTs (8; 12) were increased in the lamellae (p = 0.03), but not skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the p-GI) did not cause differential GLUT protein expression in the lamellae vs. control horses. CONCLUSIONS The results suggest that lamellar tissue functions independently of insulin and that IR may not be an essential component of laminitis aetiology. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues during metabolic dysfunction in horses. The different expression profiles of novel GLUTs during acute and subclinical laminitis may be important to disease pathophysiology and require further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infection (UTI) is one of the most common bacterial infections in humans, with uropathogenic Escherichia coli (UPEC) the leading causative organism. UPEC has a number of virulence factors that enable it to overcome host defenses within the urinary tract and establish infection. The O antigen and the capsular polysaccharide are two such factors that provide a survival advantage to UPEC. Here we describe the application of the rpsL counter selection system to construct capsule (kpsD) and O antigen (waaL) mutants and complemented derivatives of three reference UPEC strains: CFT073 (O6:K2:H1), RS218 (O18:K1:H7) and 1177 (O1:K1:H7). We observed that while the O1, O6 and O18 antigens were required for survival in human serum, the role of the capsule was less clear and linked to O antigen type. In contrast, both the K1 and K2 capsular antigens provided a survival advantage to UPEC in whole blood. In the mouse urinary tract, mutation of the O6 antigen significantly attenuated CFT073 bladder colonization. Overall, this study contrasts the role of capsule and O antigen in three common UPEC serotypes using defined mutant and complemented strains. The combined mutagenesis-complementation strategy can be applied to study other virulence factors with complex functions both in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suspected nephrocarcinogenic effects of trichloroethene (TRI) in humans are attributed to metabolites derived from the glutathione transferase (GST) pathway. The influence of polymorphisms of GSTM1 and GSTT1 isoenzymes on the risk of renal cell cancer in subjects having been exposed to high levels of TRI over many years was investigated. GSTM1 and GSTT1 genotypes were determined by internal standard controlled polymerase chain reaction. Fourty-five cases with histologically verified renal cell cancer and a history of long-term occupational exposure to high concentrations of TRI were studied. A reference group consisted of 48 workers from the same geographical region with similar histories of occupational exposures to TRI but not suffering from any cancer. Among the 45 renal cell cancer patients, 27 carried at least one functional GSTM1 (GSTM1 +) and 18 at least one functional GSTT1 (GSTT1 +). Among the 48 reference workers, 17 were GSTM1 + and 31 were GSTT1 +. Odds ratios for renal cell cancer were 2.7 for GSTM1 + individuals (95% CI, 1.18-6.33; P < 0.02) and 4.2 for GSTT1 + individuals (95% CI, 1.16-14.91; P < 0.05), respectively. The data support the present concept of the nephrocarcinogenicity of TRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, the biological activation of nephrocarcinogenic chlorinated hydrocarbons proceeds via conjugatiton with glutathione. It has mostly been assamed that the main site of initial conjugation is the liver, followed by a mandatory transfer of intermediates to the kidney. It was therefore of interest to study the enzyme activities of subgroups of glutathione transferases (GSTs) in renal cancers and the surrounding normal renal tissues of the same individuals (n = 21). For genotyping the individuals with respect to known polymorphic GST isozymes the following substrates with differential specificity were used: 1-chloro-2,4-dinitrobenzene for overall GST activity (except GST θ); 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole for GST α; 1,2-dichloro-4-nitro-benzene for GST μ; ethacrynic acid and 4-vinylpyridine for GST π; and methyl chloride for GST θ. In general, the normal tissues were able to metabolize the test substrates. A general decrease in individual GST enzyme activities was apparent in the course of cancerization, and in some (exceptional) cases individual activities, expressed in the normal renal tissue, were lost in the tumour tissue. The GST enzyme activities in tumours were independent of tumour stage, or the age and gender of the patients. There was little influence of known polymorphisms of GSTM1, GSTM3 and GSTP1 upon the activities towards the test substrates, whereas the influence of GSTT1 polymorphism on the activity towads methyl chloride was straightforward. In general, the present findings support the concept that the initial GST-dependent bioactivation step of nephrocarcinogenic chlorinated hydrocarbons may take place in the kidney itself. This should be a consideration in toxicokinetic modelling.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-care management is needed for effective management of chronic kidney disease. The main aim for treatment or management of chronic kidney disease is to delay the worsening of kidney function, and to prevent or to manage the co-morbidities. Selfcare management is not easy, and patients will face many challenges, especially when they cannot get use to the new treatment plan. One of the challenges they face is dietary restriction, which is a very important aspect in any self-care management programme. Chronic kidney disease patients require a low-protein, low-sodium, low-potassium, and low-phosphorus diet. There are several strategies patients can undertake to ensure adherence, such as self-monitoring their dietary habits and type of food consumed using a food diary; involving social support, such as family members and spouse to help them to adhere to their diet restrictions; setting goals and providing positive reinforcement when they achieved the targeted goals; joining self-management programmes to equip themselves with the necessary skills so that they can better adhere to the treatment regimes, including diet restriction; and lastly, having the knowledge about their regime, and using this knowledge to help them understand and improve their adherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Social support is an important moderator of poor well-being outcomes for nurses engaged in emotional labour with patients; however, the most effective support for renal nurses is not well understood compared with other specialties. Objectives: To identify patterns and themes in how renal nurses and two other specialties engage with patients’ emotional expressions, express their own emotion and access and provide support for emotional expenditure. Method: Renal, emergency and palliative care nurses from Perth, Western Australia, were interviewed. Results: Renal nurses engage in significant amounts of emotional labour with patients, and identify co-workers as the most important source of support due to their availability and a sense of shared experience. However, comparative analysis showed that renal nurses do not recognise their emotional expenditure as readily and have less certainty of co-worker support. Conclusions: Because their high levels of emotional engagement with patients are mostly positive, renal nurses are less prepared than other nurses to manage difficult emotional situations. As co-worker support is highly valued, organisations should train renal nurses specifically to support one another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Acinetobacter baumannii global clone 1 (GC1) isolate was found to carry a novel capsule biosynthesis gene cluster, designated KL12. KL12 contains genes predicted to be involved in the synthesis of simple sugars, as well as ones for N-acetyl-l-fucosamine (l-FucpNAc) and N-acetyl-d-fucosamine (d-FucpNAc). It also contains a module of 10 genes, 6 of which are required for 5,7-di-N-acetyl-legionaminic acid synthesis. Analysis of the composition of the capsule revealed the presence of N-acetyl-d-galactosamine, l-FucpNAc and d-FucpNAc, confirming the role of fnlABC and fnr/gdr genes in the synthesis of l-FucpNAc and d-FucpNAc, respectively. A non-2-ulosonic acid, shown to be 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-altro-non-2-ulosonic acid, was also detected. This sugar has not previously been recovered from biological source, and was designated 5,7-di-N-acetyl-acinetaminic acid (Aci5Ac7Ac). Proteins encoded by novel genes, named aciABCD, were predicted to be involved in the conversion of 5,7-di-N-acetyl-legionaminic acid to Aci5Ac7Ac. A pathway for 5,7-di-N-acetyl-8-epilegionaminic acid biosynthesis was also proposed. In available A. baumannii genomes, genes for the synthesis of 5,7-di-N-acetyl-acinetaminic acid were only detected in two closely related capsule gene clusters, KL12 and KL13, which differ only in the wzy gene. KL12 and KL13 are carried by isolates belonging to clinically important clonal groups, GC1, GC2 and ST25. Genes for the synthesis of N-acyl derivatives of legionaminic acid were also found in 10 further A. baumannii capsule gene clusters, and three carried additional genes for production of 5,7-di-N-acetyl-8-epilegionaminic acid.