832 resultados para ensembles of artificial neural networks
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007
Resumo:
This gaper demonstrates that artificial neural networks can be used effectively for estimation of parameters related to study of atmospheric conditions to high voltage substations design. Specifically, the neural networks are used to compute the variation of electrical field intensity and critical disruptive voltage in substations taking into account several atmospheric factors, such as pressure, temperature, humidity, so on. Examples of simulation of tests are presented to validate the proposed approach. The results that were obtained by experimental evidences and numerical simulations allowed the verification of the influence of the atmospheric conditions on design of substations concerning lightning.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The training and the application of a neural network system for the prediction of occurrences of secondary metabolites belonging to diverse chemical classes in the Asteraceae is described. From a database containing about 604 genera and 28,000 occurrences of secondary metabolites in the plant family, information was collected encompassing nine chemical classes and their respective occurrences for training of a multi-layer net using the back-propagation algorithm. The net supplied as output the presence or absence of the chemical classes as well as the number of compounds isolated from each taxon. The results provided by the net from the presence or absence of a chemical class showed a 89% hit rate; by excluding triterpenes from the analysis, only 5% of the genera studied exhibited errors greater than 10%. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The paper describes a novel neural model to estimate electrical losses in transformer during the manufacturing phase. The network acts as an identifier of structural features on electrical loss process, so that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through experimental data taking into account core losses, copper losses, resistance, current and temperature. The results obtained in the simulations have shown that the developed technique can be used as an alternative tool to make the analysis of electrical losses on distribution transformer more appropriate regarding to manufacturing process. Thus, this research has led to an improvement on the rational use of energy.
Resumo:
The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).
Resumo:
This paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.
Resumo:
The application of agricultural fertilizers using variable rates along the field can be made through fertility maps previously elaborated or through real-time sensors. In most of the cases applies maps previously elaborated. These maps are identified from analyzes done in soil samples collected regularly (a sample for each field cell) or irregularly along the field. At the moment, mathematical interpolation methods such as nearest neighbor, local average, weighted inverse distance, contouring and kriging are used for predicting the variables involved with elaboration of fertility maps. However, some of these methods present deficiencies that can generate different fertility maps for a same data set. Moreover, such methods can generate inprecise maps to be used in precision farming. In this paper, artificial neural networks have been applied for elaboration and identification of precise fertility maps which can reduce the production costs and environmental impacts.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
Resumo:
This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science