1000 resultados para energy pseudotensors
Resumo:
Summary There are four interactions to consider between energy intake (EI) and energy expenditure (EE) in the development and treatment of obesity. (1) Does sedentariness alter levels of EI or subsequent EE? and (2) Do high levels of EI alter physical activity or exercise? (3) Do exercise-induced increases in EE drive EI upwards and undermine dietary approaches to weight management and (4) Do low levels of EI elevate or decrease EE? There is little evidence that sedentariness alters levels of EI. This lack of cross-talk between altered EE and EI appears to promote a positive EB. Lifestyle studies also suggest that a sedentary routine actually offers the opportunity for over-consumption. Substantive changes in non exercise activity thermogenesis are feasible, but not clearly demonstrated. Cross talk between elevated EE and EI is initially too weak and takes too long to activate, to seriously threaten dietary approaches to weight management. It appears that substantial fat loss is possible before intake begins to track a sustained elevation of EE. There is more evidence that low levels of EI does lower physical activity levels, in relatively lean men under conditions of acute or prolonged semi-starvation and in dieting obese subjects. During altered EB there are a number of small but significant changes in the components of EE, including (i) sleeping and basal metabolic rate, (ii) energy cost of weight change alters as weight is gained or lost, (iii) exercise efficiency, (iv) energy cost of weight bearing activities, (v) during substantive overfeeding diet composition (fat versus carbohydrate) will influence the energy cost of nutrient storage by ~ 15%. The responses (i-v) above are all “obligatory” responses. Altered EB can also stimulate facultative behavioural responses, as a consequence of cross-talk between EI and EE. Altered EB will lead to changes in the mode duration and intensity of physical activities. Feeding behaviour can also change. The degree of inter-individual variability in these responses will define the scope within which various mechanisms of EB compensation can operate. The relative importance of “obligatory” versus facultative, behavioural responses -as components of EB control- need to be defined.
Resumo:
The effective daylighting of multistorey commercial building interiors poses an interesting problem for designers in Australia’s tropical and subtropical context. Given that a building exterior receives adequate sun and skylight as dictated by location-specific factors such as weather, siting and external obstructions; then the availability of daylight throughout its interior is dependant on certain building characteristics: the distance from a window façade (room depth), ceiling or window head height, window size and the visible transmittance of daylighting apertures. The daylighting of general stock, multistorey commercial buildings is made difficult by their design limitations with respect to some of these characteristics. The admission of daylight to these interiors is usually exclusively by vertical windows. Using conventional glazing, such windows can only admit sun and skylight to a depth of approximately 2 times the window height. This penetration depth is typically much less than the depth of the office interiors, so that core areas of these buildings receive little or no daylight. This issue is particularly relevant where deep, open plan office layouts prevail. The resulting interior daylight pattern is a relatively narrow perimeter zone bathed in (sometimes too intense) light, contrasted with a poorly daylit core zone. The broad luminance range this may present to a building occupant’s visual field can be a source of discomfort glare. Furthermore, the need in most tropical and subtropical regions to restrict solar heat gains to building interiors for much of the year has resulted in the widespread use of heavily tinted or reflective glazing on commercial building façades. This strategy reduces the amount of solar radiation admitted to the interior, thereby decreasing daylight levels proportionately throughout. However this technique does little to improve the way light is distributed throughout the office space. Where clear skies dominate weather conditions, at different times of day or year direct sunlight may pass unobstructed through vertical windows causing disability or discomfort glare for building occupants and as such, its admission to an interior must be appropriately controlled. Any daylighting system to be applied to multistorey commercial buildings must consider these design obstacles, and attempt to improve the distribution of daylight throughout these deep, sidelit office spaces without causing glare conditions. The research described in this thesis delineates first the design optimisation and then the actual prototyping and manufacture process of a daylighting device to be applied to such multistorey buildings in tropical and subtropical environments.
Resumo:
The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.
Resumo:
As the use of renewable energy sources (RESs) increases worldwide, there is a rising interest on their impacts on power system operation and control. An overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented. Following a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on sysstem frequency performance is also presented. An updated LFC model is introduced, and power system frequency response in the presence of RESs and associated issues is analysed. The need for the revising of frequency performance standards is emphasised. Finally, non-linear time-domain simulations on the standard 39-bus and 24-bus test systems show that the simulated results agree with those predicted analytically.
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.