979 resultados para electron density ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 104 and 107 K, including transitions from highly ionized iron (gsim10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 1011.2-1012.1 cm–3 were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The line intensity ratio method provides a nonintrusive diagnostic for the measurement of electron temperature in microwave-generated plasmas. For optically thin plasmas of low density, a line intensity method using He I lines can often be used, and is based on the fact that the electron impact excitation rate coefficients for helium singlet and triplet states are insensitive to electron density but differ as a function of the electron temperature. Line intensity measurements are presented from microwave-generated helium plasmas. Both steady-state corona and collision-radiative theoretical models are used to evaluate the ground and excited state populations. The line ratio versus electron temperature obtained from both of these methods are compared with the results from measurements. However, it is not possible to diagnose the electron temperature from the line ratios alone due to the presence of significant opacity and nonnegligible 1s2s S-3 metastable fraction in the plasma. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the View the MathML source3d94d1(J=0)→3d94p1(J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at View the MathML sourceλ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω2ω pumping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this letter the core-core-valence Auger transitions of an atomic impurity, both in bulk or adsorbed on a jellium-like surface, are computed within a DFT framework. The Auger rates calculated by the Fermi golden rule are compared with those determined by an approximate and simpler expression. This is based on the local density of states (LDOS) with a core hole present, in a region around the impurity nucleus. Different atoms, Na and Mg, solids, Al and Ag, and several impurity locations are considered. We obtain an excellent agreement between KL1V and KL23V rates worked out with the two approaches. The radius of the sphere in which we calculate the LDOS is the relevant parameter of the simpler approach. Its value only depends on the atomic species regardless of the location of the impurity and the type of substrate. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An innovative and effective approach based on low-pressure, low-frequency, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to synthesize device-quality nanocrystalline silicon (nc-Si) thin films at room temperature and with very competitive growth rates. The crystallinity and microstructure properties (including crystal structure, crystal volume fraction, surface morphology, etc.) of this nanostructured phase of Si can be effectively tailored in broad ranges for different device applications by simply varying the inductive rf power density from 25.0 to 41.7 mW/cm3. In particular, at a moderate rf power density of 41.7 mW/cm3, the nc-Si films feature a very high growth rate of 2.37 nm/s, a high crystalline fraction of 86%, a vertically aligned columnar structure with the preferential (111) growth orientation and embedded Si quantum dots, as well as a clean, smooth and defect-free interface. We also propose the formation mechanism of nc-Si thin films which relates the high electron density and other unique properties of the inductively coupled plasmas and the formation of the nanocrystalline phase on the Si surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The charge of an isolated dust grain and ion drag forces on the grain in a collisionless, high-voltage, capacitive rf sheath are studied theoretically. The studies are carried out assuming that the positive ions are monoenergetic, as well as in more realistic approximation, assuming that the time-averaged energy distribution of ions impinging on the dust grain has a double-peaked hollow profile. For the nonmonoenergetic case, an analytical expression for the ion flux to the dust grain is obtained. It is studied how the dust charge and ion drag forces depend on the rf frequency, electron density at plasma-sheath boundary, electron temperature and ratio of the effective oscillation amplitude of rf current to the electron Debye length. It is shown that the dust charge and ion drag forces obtained in the monoenergetic ion approximation may differ from those calculated assuming that the ions are nonmonoenergetic. The difference increases with increasing the width of the ion energy spread in the ion distribution. © 2009 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The response of complex ionized gas systems to the presence of nonuniform distribution of charged grains is investigated using a kinetic model. Contrary to an existing view that the electron temperature inevitably increases in the grain-occupied region because of enhanced ionization to compensate for the electrons lost to the grains, it is shown that this happens only when the ionizing electric field increases in the electron depleted region. The results for two typical plasma systems suggest that when the ionizing electric field depends on the spatially averaged electron density, the electron temperature in the grain containing region can actually decrease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In images with low contrast-to-noise ratio (CNR), the information gain from the observed pixel values can be insufficient to distinguish foreground objects. A Bayesian approach to this problem is to incorporate prior information about the objects into a statistical model. A method for representing spatial prior information as an external field in a hidden Potts model is introduced. This prior distribution over the latent pixel labels is a mixture of Gaussian fields, centred on the positions of the objects at a previous point in time. It is particularly applicable in longitudinal imaging studies, where the manual segmentation of one image can be used as a prior for automatic segmentation of subsequent images. The method is demonstrated by application to cone-beam computed tomography (CT), an imaging modality that exhibits distortions in pixel values due to X-ray scatter. The external field prior results in a substantial improvement in segmentation accuracy, reducing the mean pixel misclassification rate for an electron density phantom from 87% to 6%. The method is also applied to radiotherapy patient data, demonstrating how to derive the external field prior in a clinical context.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ∼108 cm−3 is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detailed investigation of the charge density distribution in concomitant polymorphs of 3-acetylcoumarin in terms of experimental and theoretical densities shows significant differences in the intermolecular features when analyzed based on the topological properties via the quantum theory of atoms in molecules. The two forms, triclinic and monoclinic (Form A and Form B), pack in the crystal lattice via weak C-H---O and C-H---pi interactions. Form A results in a head-to-head molecular stack, while Form B generates a head-to-tail stack. Form A crystallizes in PI (Z' = 2) and Form B crystallizes in P2(1)/n (Z = 1). The electron density maps of the polymorphs demonstrate the differences in the nature of the charge density distribution in general. The charges derived from experimental and theoretical analysis show significant differences with respect to the polymorphic forms. The molecular dipole moments differ significantly for the two forms. The lattice energies evaluated at the HF and DFT (B3LYP) methods with 6-31G** basis set for the two forms clearly suggest that Form A is the thermodynamically stable form as compared to Form B. Mapping of electrostatic potential over the molecular surface shows dominant variations in the electronegative region, which bring out the differences between the two forms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The experimental charge density distribution in three compounds, 2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-8-methylquinoline, has been obtained using high-resolution X-ray diffraction data collected at 100 K based on the aspherical multipole modeling of electron density. These compounds represent type I (cis), type I (trans), and type II geometries, respectively, as defined for short Cl center dot center dot center dot Cl interactions. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from a periodic quantum calculation at the B3LYP/6-31G** level. The topological features derived from the Bader's theory of atoms in molecules (AIM) approach unequivocally suggest that both cis and trans type I geometries show decreased repulsion, whereas type II geometry is attractive based on the nature of polar flattening of the electron density around the Cl atom.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental charge density distribution in 2-chloro-4-fluorobenzoic acid and 4-fluorobenzamide has been carried out using high resolution X-ray diffraction data collected at 100 K using Hansen-Coppens multipolar formalism of electron density. These compounds display short Cl center dot center dot center dot F and F center dot center dot center dot F interactions, respectively. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from periodic quantum calculation at the B3LYP/6-31G** level. The topological features were derived from Bader's ``atoms in molecules'' (AIM) approach. Intermolecular Cl center dot center dot center dot F interaction in 2-chloro-4-fluorobenzoic acid is attractive in nature (type II interaction) while the nature of F center dot center dot center dot F interactions in 4-fluorobenzamide shows indication of a minor decrease in repulsion (type I interaction), though the extent of polarization on the fluorine atom is arguably small.