983 resultados para electromagnetic wave emission
Resumo:
Transmission of an electromagnetic wave from a heavily doped n-type GaAs film is studied theoretically. The calculations are performed using the two-dimensional finite-different time-domain method. From the calculations, we find the extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies. By determining a set of groove parameters, we optimize the transmission to as high as 55.2%. We ascribe this extraordinary transmission to the coupling of the surface-plasmon polariton modes and waveguide modes. Such an enhanced transmission device can be useful for mid-infrared wave filters, emitters, and monitors.
Resumo:
We propose the exploding-reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground-penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane-wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century.
Resumo:
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.
Resumo:
Using the approximate high-frequency asymptotic methods to solve the scalar wave equation, we can get the eikonal equation and transport equation. Solving the eikonal equation by the method of characteristics provides a mathematical derivation of ray tracing equations. So, the ray tracing system is folly based on the approximate high-frequency asymptotic methods. If the eikonal is complex, more strictly, the eikonal is real value at the rays and complex outside rays, we can derive the Gaussian beam. This article mainly concentrates on the theory of Gaussian beam. To classical ray tracing theory, the Gaussina beam method (GBM) has many advantages. First, rays are no longer required to stop at the exact position of the receivers; thus time-consuming two-point ray tracing can be avoided. Second, the GBM yields stable results in regions of the wavefield where the standard ray theory fails (e.g., caustics, shadows zones and critical distance). Third, unlike seismograms computed by conventional ray tracing techniques, the GBM synthetic data are less influenced by minor details in the model representation. Here, I realize kinematical and dynamical system, and based on this, realize the GBM. Also, I give some mathematical examples. From these examples, we can find the importance and feasibility of the ray tracing system. Besides, I've studied about the reflection coefficient of inhomogeneous S-electromagnetic wave at the interface of conductive media. Basing on the difference of directions of phase shift constant and attenuation constant when the electromagnetic wave propagates in conductive medium, and using the boundary conditions of electromagnetic wave at the interface of conductive media, we derive the reflection coefficient of inhomogeneous S-electromagnetic wave, and draw the curves of it. The curves show that the quasi total reflection will occur when the electromagnetic wave incident from the medium with greater conductivity to the medium with smaller conductivity. There are two peak, values at the points of the critical angles of phase shift constant and attenuation constant, and the reflection coefficient is smaller than 1. This conclusion is different from that of total reflection light obviously.
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
We test the hypothesis that methane is the source of the carbon observed in carbon-bearing molecules around oxygen-rich stars, by considering the synthesis of formaldehyde which is formed in the reaction between oxygen atoms and methyl radicals. We find that, provided that the parent methane abundance is large enough, millimetre-wave emission lines of H2CO should be detectable in such stars. We also consider the formation of other species, notably H2CN and H2CS, from methyl radicals, but conclude that they will be at least one order of magnitude less abundant than H2CO and therefore not detectable with current instrumentation.
Resumo:
We propose a general framework to effectively `open' a high-Q resonator, that is, to release the quantum state initially prepared in it in the form of a traveling electromagnetic wave. This is achieved by employing a mediating mode that scatters coherently the radiation from the resonator into a one-dimensional continuum of modes such as a waveguide. The same mechanism may be used to `feed' a desired quantum field to an initially empty cavity. Switching between an `open' and `closed' resonator may then be obtained by controlling either the detuning of the scatterer or the amount of time it spends in the resonator. First, we introduce the model in its general form, identifying (i) the traveling mode that optimally retains the full quantum information of the resonator field and (ii) a suitable figure of merit that we study analytically in terms of the system parameters. Then, we discuss two feasible implementations based on ensembles of two-level atoms interacting with cavity fields. In addition, we discuss how to integrate traditional cavity QED in our proposal using three-level atoms.
Resumo:
We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful in the simulation of ionospheric scintillation effects during the transmission of GNSS signals. The method requires only the knowledge of parameters S4 (scintillation index) and σΦ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The Zhang algorithm is used to produce Nakagami-distributed signals from a set of Gaussian autoregressive processes.
Resumo:
A trapezoidal strip grating surface that eliminates specular reflections almost over the entire X -band frequency range for TM polarization is reported This new grating structure overcomes the bandwidth limitation of conventional rectangular strip grating surfaces
Resumo:
Electric permittivity and magnetic permeability control electromagnetic wave propagation th rough materials. I n naturally occu rring materials, these are positive. Artificial materials exhi b iting negative material properties have been reported : they are referred to as metamaterials. This paper concentrates on a ring-type split-ring resonator (SRR) exhibiting negative magnetic permeability. The design and synthesis of the SRR using the genetic-algorithm approach is explained in detail. A user-friendly g raphical user i nterface (G U I ) for an SRR optim izer and estimator using MATLAB TM is also presented
Resumo:
Flexible and thin single layer microwave absorbers based on strontium ferrite–carbon black–nitrile rubber composites have been fabricated employing a specific recipe and their reflection loss characteristics were studied in the S (2–4 GHz) and X-bands (8–12 GHz). The incorporation of carbon black not only reinforces the rubber by improving the mechanical properties of the composite but also modifies the dielectric permittivity of the composite. Strontium ferrite when impregnated into a rubber matrix imparts the required magnetic permeability to the composite. The combination of strontium ferrite and carbon black can then be employed to tune the microwave absorption characteristics of the resulting composite. The complex dielectric permittivity and permeability were measured by employing a cavity perturbation technique. The microwave absorption characteristics of composites were modelled in that an electromagnetic wave incident normally on the metal terminated single layer absorber. The influence of filler volume fraction, frequency, absorber thickness on the bandwidth of absorption are discussed and correlated
Resumo:
Flexile single layer electromagnetic wave absorbers were designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands. Effective dielectric permittivity and magnetic permeability were measured using cavity perturbation method in the frequency range of 2–12 GHz. The microwave absorbing characteristics of the composites were studied in the S, C, and X-bands employing a model in which an electromagnetic wave is incident normally on a metal terminated single layer. Reflection loss exceeding 20 dB is obtained for all the samples in a wide frequency range of 2–12 GHz when an appropriate absorber thickness between 5 and 9mm is chosen. The impact of carbon black is clearly observed in the optimized composites on the mechanical strength, thickness, band width of absorption, dielectric properties,
Resumo:
We report on the results of a laboratory investigation using a rotating two-layer annulus experiment, which exhibits both large-scale vortical modes and short-scale divergent modes. A sophisticated visualization method allows us to observe the flow at very high spatial and temporal resolution. The balanced long-wavelength modes appear only when the Froude number is supercritical (i.e. $F\,{>}\,F_\mathrm{critical}\,{\equiv}\, \upi^2/2$), and are therefore consistent with generation by a baroclinic instability. The unbalanced short-wavelength modes appear locally in every single baroclinically unstable flow, providing perhaps the first direct experimental evidence that all evolving vortical flows will tend to emit freely propagating inertia–gravity waves. The short-wavelength modes also appear in certain baroclinically stable flows. We infer the generation mechanisms of the short-scale waves, both for the baro-clinically unstable case in which they co-exist with a large-scale wave, and for the baroclinically stable case in which they exist alone. The two possible mechanisms considered are spontaneous adjustment of the large-scale flow, and Kelvin–Helmholtz shear instability. Short modes in the baroclinically stable regime are generated only when the Richardson number is subcritical (i.e. $\hbox{\it Ri}\,{<}\,\hbox{\it Ri}_\mathrm{critical}\,{\equiv}\, 1$), and are therefore consistent with generation by a Kelvin–Helmholtz instability. We calculate five indicators of short-wave generation in the baroclinically unstable regime, using data from a quasi-geostrophic numerical model of the annulus. There is excellent agreement between the spatial locations of short-wave emission observed in the laboratory, and regions in which the model Lighthill/Ford inertia–gravity wave source term is large. We infer that the short waves in the baroclinically unstable fluid are freely propagating inertia–gravity waves generated by spontaneous adjustment of the large-scale flow.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.