802 resultados para electrochemical biosensor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10−5 M to 1 × 10−2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional (3D) multicellular spheroids are exceptional in vitro cell models for their ability to accurately mimic real cell-cell interaction processes. However, the challenges in producing well-defined spheroids with controlled size together with the deficiency of techniques to monitor them significantly restrict their use. Herein, a novel device to study spheroid formation in real time is presented. By exploiting electrochemical impedance spectroscopy, a multi-electrode array (MEA) attached to a calcium alginate scaffold is able to monitor the behaviour of 36 different hydrogel wells. The scaffold contains inverted shape pyramidal microwells, which guide the aggregation of cells into spheroids with controlled dimensions. Preliminar studies on calcium alginate, optimisation of fabrication strategy are shown, together with testing of the device in the presence and the absence of the hydrogel. Lastly, the device was tested for its intended aim, i.e. to monitor the formation of a spheroid, proving its potential as an impedance biosensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical behavior of pesticides is extensively studied, but little attention has been given to the study of their degradation products (by-products) by electrochemical methods. However, the degradation products of pesticides can be even more toxic then the parent products and such studies should be encouraged. Therefore, the objective of this work was to evaluate the electroactivity of by-products of imazaquin, methylparathion, bentazon and atrazine, generated by UV irradiation and measured using cyclic and differential pulse voltammetry and UV-visible absorption spectrophotometry. Results have shown that several by-products exhibit electroactivity, allowing, in some cases, the simultaneous determination of both parent and degradation products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical removals of color and organic load from solutions containing the dye reactive orange 16 (RO16) were performed in an electrochemical flow-cell, using a platinum working electrode. The influence of the process variables flow-rate, such as NaCl concentration, applied potential and solution pH, were studied. The best color removal achieved was 93% (λ = 493 nm) after 60 min at 2.2 V vs. RHE electrolysis, using 1.00 g L-1 NaCl as supporting electrolyte. The rises in the concentration of NaCl and applied potential increased the color removal rate. The best total organic carbon removal (57%) was obtained at 1.8 V, without the separating membrane, indicating that the ideal conditions for the color removal are not necessarily the same as those to remove the total organic carbon. The degradation efficiency decreased with the solution pH decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behavior of fluconazole showed an irreversible oxidation process, with the electrochemical - chemical mechanism being highly dependent on the electrode material. Adsorption of reagent at positive applied potential was observed at Pt electrode while preferential adsorption of the oxidation products was observed at Glassy Carbon surfaces. In pH below 7.0, the anodic current process was intensively decreased. At carbon paste electrode, the fluconazole oxidation current, recorded in phosphate buffer solution (pH 8.0), changed linearly with the fluconazole concentration, Ipa = 5.7×10-5 (mA) × 0.052 [Fluconazol] (μg mL-1), in the range of 48.0 to 250.0 μg mL-1. The detection limit obtained was 6.3 μg mL-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the study of photochemical behavior of polycyclic aromatic hydrocarbons (PAHs), potential pollutants in secondary reactions in aerosols, through Raman spectroscopy compared with its electrochemical behavior. The PAHs studied include pyrene, anthracene, phenanthrene and fluorene. These were adsorbed onto TiO2 and irradiated with ultraviolet light (254 nm). Their electrochemical oxidation was studied by in situ Surface-enhanced Raman Scattering (SERS) and led to the formation of carbonyl-containing products. Oxidized intermediates bearing the C=O group were also formed during photodegradation. The joint analysis of the photodegradation data with those produced by electrochemical means - using spectroscopic techniques for the identification and characterization of the products - revealed the formation of identical products for anthracene, but not for pyrene. A reasonable explanation for this difference in results is that photochemical and electrochemical oxidation reactions proceed via different mechanisms. While photocatalytic degradation over TiO2 is initiated by hydroxyl radicals, electrochemical oxidation is initiated by the direct electron transfer from adsorbed PAH to the electrode, generating PAH cation radicals that undergo subsequent reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative technique for the fabrication of disposable electrochemical microcells containing working, reference and auxiliary electrodes on a single device is reported. The procedure is based on thermal-transfer of toner masks onto CD-R (recordable compact discs) gold surfaces to define the layout of the electrodes (contour). In a subsequent step, the layout is manually painted with a permanent marker pen. The unprotected gold surface is conveniently etched (chemical corrosion) and the ink is then easily removed with ethanol, generating gold surfaces without contamination. The final and reproducible area of the electrodes is defined by heat transference of a second toner mask. Silver epoxy is deposited on one of the gold bands which is the satisfactorily used as reference electrode. These microcells were electrochemically characterized by cyclic, linear, and square wave voltammetry, and several electroactive species were used as model systems. The area reproducibility of the electrodes for different microcells was studied and a relative standard deviation better than 1,0% (n = 10) was obtained. Disposable electrochemical microcells were successfully used in analysis of liquid samples with volumes lower than 200 µL and good stability and reproducibility (RSD less than 2.0%) were achieved. These microcells were also evaluated for quantification of paracetamol and dipyrone in pharmaceutical formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amperometric lactate biosensor with lactate oxidase immobilized into a Prussian Blue (PB) modified electrode was fabricated. The advantage of using cetyltrimethylammonium bromide (CTAB) in the electrodeposition step of PB films onto glassy carbon surfaces was confirmed taking into account both the stability and sensitivity of the measurements. The biosensor was used in the development of a FIA amperometric method for the determination of lactate. Under optimal operating conditions (pH = 6.9, E = -0.1 V), the linear response of the method was extended up to 0.28 µmol L-1 lactate with a limit of detection of 0.84 mmol L-1. The repeatability of the method for injections of a 0.28 mmol L-1 lactate solution was 2.2 % (n = 18). The usefulness of the method was demonstrated by determining lactate in beer samples and the results were in good agreement with those obtained by using a reference spectrophotometric enzyme method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.