922 resultados para electric power systems -- mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increase in the use of multi-pulse, rectifier-fed motor-drive equipment on board more-electric aircraft. Motor drives with feedback control appear as constant power loads to the rectifiers, which can cause instability of the DC filter capacitor voltage at the output of the rectifier. This problem can be exacerbated by interactions between rectifiers that share a common source impedance. In order that such a system can be analysed, there is a need for average, dynamic models of systems of rectifiers. In this study, an efficient, compact method for deriving the approximate, linear, large-signal, average models of two heterogeneous systems of rectifiers, which are fed from a common source impedance, is presented. The models give insight into significant interaction effects that occur between the converters, and that arise through the shared source impedance. First, a 6-pulse and doubly wound, transformer-fed, 12-pulse rectifier system is considered, followed by a 6-pulse and autotransformer-fed, 12-pulse rectifier system. The system models are validated against detailed simulations and laboratory prototypes, and key characteristics of the two system types are compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a computational, called MOMENTS, code developed to be used in process control to determine a characteristic transfer function to industrial units when radiotracer techniques were been applied to study the unit´s performance. The methodology is based on the measuring the residence time distribution function (RTD) and calculate the first and second temporal moments of the tracer data obtained by two scintillators detectors NaI positioned to register a complete tracer movement inside the unit. Non linear regression technique has been used to fit various mathematical models and a statistical test was used to select the best result to the transfer function. Using the code MOMENTS, twelve different models can be used to fit a curve and calculate technical parameters to the unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological models written in a mathematical language L(M) or model language, with a given style or methodology can be considered as a text. It is possible to apply statistical linguistic laws and the experimental results demonstrate that the behaviour of a mathematical model is the same of any literary text of any natural language. A text has the following characteristics: (a) the variables, its transformed functions and parameters are the lexic units or LUN of ecological models; (b) the syllables are constituted by a LUN, or a chain of them, separated by operating or ordering LUNs; (c) the flow equations are words; and (d) the distribution of words (LUM and CLUN) according to their lengths is based on a Poisson distribution, the Chebanov's law. It is founded on Vakar's formula, that is calculated likewise the linguistic entropy for L(M). We will apply these ideas over practical examples using MARIOLA model. In this paper it will be studied the problem of the lengths of the simple lexic units composed lexic units and words of text models, expressing these lengths in number of the primitive symbols, and syllables. The use of these linguistic laws renders it possible to indicate the degree of information given by an ecological model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximum power point with temperature and isolation levels. A comparison of buck versus boost maximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system. It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned. This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects. The concepts of different types of wind turbine generators (WTGs) and the principles of the grid-connected structures of wind power generation systems are first briefly introduced. Then, the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified. Finally, the control strategies on WTGs to enhance power system damping characteristics are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuum model is a key paradigm describing the behavior of electromechanical transients in power systems. In the past two decades, much research work has been done on applying the continuum model to analyze the electromechanical wave in power systems. In this work, the uniform and non-uniform continuum models are first briefly described, and some explanations borrowing concepts and tools from other fields are given. Then, the existing approaches of investigating the resulting wave equations are summarized. An application named the zero reflection controller based on the idea of the wave equations is next presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.