865 resultados para edge morphology
Resumo:
Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.
Resumo:
As seen from informal courtyard; Duhig Tower beyond.
Resumo:
Colloidal PbS nanocrystals over-coated with CdS are prepared in aqueous solutions and exhibit strong photoluminescence with two distinct peaks in the visible regime. A photoluminescence peak is observed at 640 nm, which is attributed to the band edge recombination in the PbS nanocrystals, and another peak at 510 nm, which is above the band edge of the PbS nanocrystals. The two PL peaks are isolated by extracting separate species of nanocrystal based upon their surface morphology. Micro-emulsions of hexane:PVA are used to remove the species containing the PL peak at 640 nm from the solution, leaving a singular peak at 510 nm. We show conclusively that the double-peaked structure observed in the photoluminescence spectra of PbS nanocrystals over-coated with CdS is due to the presence of two distinctly different nanocrystal species.
Resumo:
View along south elevation, stair to belvedere beyond and bedboxes above.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
Phylogenies of trematodes based on characters derived from morphology and life cycles have been controversial. Here, we add molecular data to the phylogenetic study of a group of trematodes, members of the superfamily Hemiuroidea Looss, 1899. DNA sequences from the V4 domain of the nuclear small subunit (18S) rRNA gene and a matrix of morphological characters modified from a previous study were used. There was no significant incongruence between the molecular and the morphological data. However, this was probably due largely to the limited resolving power of the morphological data. Analyses support a monophyletic Hemiuroidea containing at least the families Accacoeliidae, Derogenidae, Didymozoidae, Hirudinellidae, Sclerodistomidae, Syncoeliidae, Isoparorchiidae, Lecithasteridae, and Hemiuridae. These families fall into two principal clades. One contains the first six families and the other the Hemiuridae and lecithasterine lecithasterids. The positions of the hysterolecithine lecithasterids and the Isoparorchiidae were poorly resolved. The Ptychogonimidae may be the sister group of the remaining Hemiuroidea, but there was no support from the molecular data for the placement of the Azygiidae within the superfamily. (C) 1998 Academic Press.
Resumo:
The gross morphology, histology, and ultrastructure of the thyroid gland of the koala, Phascolarctos cinereus, is described. Generally, the glands were found to contain large-diameter follicles in association with an epithelium of low height. Morphometric analysis demonstrated a high relative thyroid weight (0.3 +/- 0.2 g/kg) for koalas compared with the 0.07-0.24 g/kg typical of eutherian mammals and 0.03-0.1 g/kg found in other marsupials. The relative thyroid weight of glands (0.33 +/- 0.21 g/kg) from the coastal population (less than 28 km from the coastline) was found to be significantly higher (ANOVA: P = 0.007, significant at the 1% level) than that for glands (0.21 +/- 0.11 g/kg) of noncoastal koalas (greater than 28 km from the coastline). Follicle size was positively correlated (at the 0.1% level) with relative thyroid weight in the overall koala sample. The presence of C cells, occurring singly in the epithelial layer, was demonstrated in electron micrographs. Structural features such as low epithelial height, large follicle length and width, and large intercellular spaces in association with low concentrations of free TS (3.3 +/- 2.1 pM) and free T-3 (1.4 +/- 0.9 pM) as reported previously (Lawson et al., 1996) are consistent with an unusually low level of glandular activity in the koala thyroid even though iodine concentrations in the thyroid gland [4.7 +/- 1.6 mg/g (dry weight)] as well as leaf [0.8 +/- 0.3 mu g (dry weight)] and soil samples [3.8 mu g/g (dry weight)] from the koalas' habitat appear unremarkable. (C) 1998 Academic Press.
Resumo:
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 degrees C, 26 degrees C, 28 degrees C and 31 degrees C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 degrees C and 28 degrees C had wider heads than hatchlings incubated at 24 degrees C and 31 degrees C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 degrees C than at 26 degrees C, 28 degrees C and 31 degrees C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass.
Resumo:
Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
There is no morphological synapomorphy for the disparate digeneans, the Fellodistomidae Nicoll, 1909. Although all known life-cycles of the group include bivalves as first intermediate hosts, there is no convincing morphological synapomorphy that can be used to unite the group. Sequences from the V4 region of small subunit (18S) rRNA genes were used to infer phylogenetic relationships among 13 species of Fellodistomidae from four subfamilies and eight species from seven other digenean families: Bivesiculidae; Brachylaimidae; Bucephalidae; Gorgoderidae; Gymnophallidae; Opecoelidae; and Zoogonidae. Outgroup comparison was made initially with an aspidogastrean. Various species from the other digenean families were used as outgroups in subsequent analyses. Three methods of analysis indicated polyphyly of the Fellodistomidae and at least two independent radiations of the subfamilies, such that they were more closely associated with other digeneans than to each other. The Tandanicolinae was monophyletic (100% bootstrap support) and was weakly associated with the Gymnophallidae (< 50-55% bootstrap support). Monophyly of the Baccigerinae was supported with 78-87% bootstrap support, and monophyly of the Zoogonidae + Baccigerinae received 77-86% support. The remaining fellodistomid species, Fellodistomum fellis, F. agnotum and Coomera brayi (Fellodistominae) plus Proctoeces maculatus and Complexobursa sp. (Proctoecinae), formed a separate clade with 74-92% bootstrap support. On the basis of molecular, morphological and life-cycle evidence, the subfamilies Baccigerinae and Tandanicolinae are removed from the Fellodistomidae and promoted to familial status. The Baccigerinae is promoted under the senior synonym Faustulidae Poche, 1926, and the Echinobrevicecinae Dronen, Blend & McEachran, 1994 is synonymised with the Faustulidae. Consequently, species that were formerly in the Fellodistomidae are now distributed in three families: Fellodistomidae; Faustulidae (syn. Baccigerinae Yamaguti, 1954); and Tandanicolidae Johnston, 1927. We infer that the use of bivalves as intermediate hosts by this broad range of families indicates multiple host-switching events within the radiation of the Digenea.
Resumo:
We assayed nest predation as an edge effect, using artificial ground nests, at inherent (naturally occurring) and induced (human-created) edges, in the Murray Mallee, South Australia. Nests were constructed at distances between 0-120 m away from habitat edges. The relative predation rate on nests generally increased close to induced edges with a significant difference (P < 0.05) recorded for two out of five experiments. Predation rate at inherent edges was similar from the edge to the interior, and was lower than that recorded at induced edges. Our results suggest that increased predator numbers, activity or efficiency at locating nests occurred close to the induced edges at our study sites.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
The reproductive system of many female Therevidae has a sac-like structure associated with the spermathecae. This structure, termed the spermathecal sac, has not been recorded previously from any other Diptera and appears unique to certain members of the Therevidae. There is enormous variety in spermathecal sac size and shape, with greatest development in the Australasian Therevidae. A histological examination of the reproductive system of two;Australian therevids, Agapophytus albobasalis Mann and Ectinorhynchus variabilis (Macquart) (Diptera: Asiloidea), reveals that the spermathecal sacs are cuticle-lined and that the intima is frequently highly folded. In some mated individuals, sperm was found within the spermathecal sac, suggesting that sperm and perhaps male accessory gland material is deposited there during copulation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Sexual dimorphism among crawlers of the scale insect family Eriococcidae is reported for the first time. The general morphology of crawlers of the gall-inducing genus Apiomorpha (Eriococcidae) is presented and sexual dimorphism described. Sexual dimorphism appears to be associated with differential dispersal and settling-site preference of the sexes during the crawler stage. First-instar males of the A. pharetrata and A. munita species-groups settle only on the galls induced by their mothers or, in the case of A. munita, also galls of nearby females, whereas female crawlers disperse. Female crawlers of all species of Apiomorpha, and male crawlers of most species, are well suited for air-borne dispersal. It is suggested that sexual dimorphism among crawlers of Apiomorpha, and some other scale insects, is the result of loss or reduction of those morphological features associated with dispersal. In addition, male crawlers of some species of Apiomorpha have sensory structures which may assist in the detection of sex-specific settling sites.