972 resultados para eccentric exercise
Resumo:
STUDY DESIGN: Reliability and case-control injury study. OBJECTIVES: 1) To determine if a novel device, designed to measure eccentric knee flexors strength via the Nordic hamstring exercise (NHE), displays acceptable test-retest reliability; 2) to determine normative values for eccentric knee flexors strength derived from the device in individuals without a history of hamstring strain injury (HSI) and; 3) to determine if the device could detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND: HSIs and reinjuries are the most common cause of lost playing time in a number of sports. Eccentric knee flexors weakness is a major modifiable risk factor for future HSIs, however there is a lack of easily accessible equipment to assess this strength quality. METHODS: Thirty recreationally active males without a history of HSI completed NHEs on the device on 2 separate occasions. Intraclass correlation coefficients (ICCs), typical error (TE), typical error as a co-efficient of variation (%TE), and minimum detectable change at a 95% confidence interval (MDC95) were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed NHEs on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS: The device displayed high to moderate reliability (ICC = 0.83 to 0.90; TE = 21.7 N to 27.5 N; %TE = 5.8 to 8.5; MDC95 = 76.2 to 60.1 N). Mean±SD normative eccentric flexors strength, based on the uninjured group, was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limbs were 15% weaker than the contralateral uninjured limbs (mean difference = 50.3 N; 95% CI = 25.7 to 74.9N; P < .01), 15% weaker than the normative left limb data (mean difference = 50.0 N; 95% CI = 1.4 to 98.5 N; P = .04) and 18% weaker than the normative right limb data (mean difference = 66.5 N; 95% CI = 18.0 to 115.1 N; P < .01). CONCLUSIONS: The experimental device offers a reliable method to determine eccentric knee flexors strength and strength asymmetry and revealed residual weakness in previously injured elite athletes.
Resumo:
The purpose of this study was to investigate if chronic eccentric strength training (ST) affects heart rate (HR) and heart rate variability (HRV) during sub-maximal isometric voluntary contractions (SIVC). The training group (TG) (9 men, 62 ± 2) was submitted to ST (12 weeks, 2 days/week, 2 - 4 sets of 8-12 repetitions at 75-80% peak torque (PT). The control group (CG) (8 men, 64 ± 4) did not perform ST. The HR and the HRV (RMSSD index) were evaluated during SIVC of the knee extension (15, 30 and 40% of PT). ST increased the eccentric torque only in TG, but did not change the isometric PT and the duration of SIVC. During SIVC, the HR response pattern and the RMSSD index were similar for both groups in pre- and post-training evaluations. Although ST increased the eccentric torque in the TG, it did not generate changes in HR or HRV. © Springer-Verlag 2008.
Resumo:
Contextualização:Ações concêntricas apresentam maior estresse cardiovascular quando comparadas às excêntricas. Entretanto, não se sabe a influência desses tipos de ações no comportamento da modulação autonômica cardíaca durante o processo de recuperação pós-esforço.Objetivo:Comparar o efeito de um treinamento resistido para o grupo extensor do joelho realizado com ênfase concêntrica vs excêntrica sobre a força muscular e a recuperação pós-exercício considerando índices de variabilidade de frequência cardíaca (VFC) em jovens saudáveis.Método:Cento e cinco homens, com idades entre 18 e 30 anos, foram randomizados em quatro grupos: controle concêntrico (CCONC), controle excêntrico (CEXC), treinamento concêntrico (TCONC) e treinamento excêntrico (TEXC). Os grupos CCONC e CEXC realizaram uma sessão de exercício reduzido (ER) para o grupo extensor do joelho [três séries de uma repetição a 100% de uma repetição máxima (1RM)], e os grupos TCONC e TEXC realizaram dez sessões de treinamento. A VFC foi analisada no momento basal e na recuperação após as sessões (T1, T2, T3 e T4).Resultados:Observou-se aumento da força muscular para o grupo TEXC. Em relação à modulação autonômica cardíaca, observou-se, em comparação ao momento basal, aumento dos índices SDNN e SD2 no momento T1 nos grupos CCONC e CEXC e aumento dos índices RMSSD, SD1 e AF (ms2) nos momentos T1, T2 e T4 no grupo TEXC.Conclusões:Conclui-se que o treinamento resistido realizado com ênfase em contrações excêntricas promoveu ganho de força e aumento da modulação vagal cardíaca durante o processo de recuperação em relação à condição basal.
Resumo:
This study evaluated the effects of 8 weeks of eccentric endurance training (EET) in male subjects (age range 42-66 years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET ( n=6) was done on a conventional cycle ergometer and EET ( n=6) on a custom-built motor-driven ergometer. During the first 5 weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8) W [mean (SE)] for CET and 338 (34) W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60 degrees s(-1) and 120 degrees s(-1), respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subjects.
Resumo:
We investigated the effect of carbohydrate ingestion after maximal lengthening contractions of the knee extensors on circulating concentrations of myocellular proteins and cytokines, and cytokine mRNA expression in muscle. Using a cross-over design, 10 healthy males completed 5 sets of 10 lengthening (eccentric) contractions (unilateral leg press) at 120% 1 repetition-maximum. Subjects were randomized to consume a carbohydrate drink (15% weight per volume; 3 g/kg BM) for 3 h after exercise using one leg, or a placebo drink after exercise using the contralateral leg on another day. Blood samples (10 mL) were collected before exercise and after 0, 30, 60, 90, 120, 150, and 180 min of recovery. Muscle biopsies (vastus lateralis) were collected before exercise and after 3 h of recovery. Following carbohydrate ingestion, serum concentrations of glucose (30-90 min and at 150 min) and insulin (30-180 min) increased (P < 0.05) above pre-exercise values. Serum myoglobin concentration increased (similar to 250%; P < 0.05) after both trials. In contrast, serum cytokine concentrations were unchanged throughout recovery in both trials. Muscle mRNA expression for IL-8 (6.4-fold), MCP-1 (4.7-fold), and IL-6 (7.3-fold) increased substantially after carbohydrate ingestion. TNF-alpha mRNA expression did not change after either trial. Carbohydrate ingestion during early recovery from exercise-induced muscle injury may promote proinflammatory reactions within skeletal muscle.
Resumo:
Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb = 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during slow maximal eccentric contraction compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and re-injury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest greater attention be given to neural function of the knee flexors following hamstring strain injury.
Resumo:
INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. PURPOSE: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed an increased level of activation following intermittent running (0.12%; 95% CI = 0.049 to 0.030; P = 0.0102). CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Introduction: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is sometimes greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. The purpose of this research was to determine whether declines in knee flexor strength following overground repeat sprints are caused by declines in voluntary activation of the hamstring muscles. Methods: Seventeen recreationally active males completed 3 sets of 6 by 20m overground sprints. Maximal isokinetic concentric and eccentric knee flexor and concentric knee extensor strength was determined at ±1800.s-1 and ±600.s-1 while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. Results: Overground repeat sprint running resulted in a significant decline in eccentric knee flexor strength (31.1 Nm; 95% CI = 21.8 to 40.3 Nm; p < 0.001). However, concentric knee flexor strength was not significantly altered (11.1 Nm; 95% CI= -2.8 to 24.9; p=0.2294). Biceps femoris voluntary activation levels displayed a significant decline eccentrically (0.067; 95% CI=0.002 to 0.063; p=0.0325). However, there was no significant decline concentrically (0.025; 95% CI=-0.018 to 0.043; p=0.4243) following sprinting. Furthermore, declines in average peak torque at -1800.s-1 could be explained by changes in hamstring activation (R2 = 0.70). Moreover, it was change in the lateral hamstring muscle activity that was related to the decrease in knee flexor torque (p = 0.0144). In comparison, medial hamstring voluntary activation showed no change for either eccentric (0.06; 95% CI = -0.033 to 0.102; p=0.298) or concentric (0.09; 95% CI = -0.03 to 0.16; p=0.298) muscle actions following repeat sprinting. Discussion: Eccentric hamstring strength is decreased significantly following overground repeat sprinting. Voluntary activation deficits in the biceps femoris muscle explain a large portion of this weakness. The implications of these findings are significant as the biceps femoris muscle is the most frequently strained of the knee flexors and fatigue is implicated in the aetiology of this injury.
Resumo:
Background: Hamstring strain injuries (HSIs) are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of gait. The impact of prior strain injury on neuromuscular function of the hamstrings during tasks requiring high rates of torque development has received little attention. The purpose of this study is to determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of eccentric muscle activation, rate of torque development and impulse 30, 50 and 100ms after the onset of electromyographical or torque development in the previously injured limb compared to the uninjured limb. Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, p=0.008; IMP, p=0.005) and 100ms (RTD, p=0.001; IMP p<0.001) after the onset of contraction. There was also a non-significant trend for rate of torque development during -1800.s-1 to be lower 100ms after onset of contraction (p=0.064). Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, p=0.009; -1800.s-1, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during eccentric contraction. Lower muscle activation was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings have important implications for hamstring strain injury and re-injury and suggest greater attention be given to neural function of the knee flexors.
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: (1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running (-10% gradient) at 60% VO2max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E(2), leukotriene B(4) and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P<0.05) after all three trials. Plasma prostaglandin E(2) concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B(4) did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher (P<0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage
Resumo:
The aim of this study was to determine whether declines in knee flexor strength following overground repeat sprints were related to changes in hamstrings myoelectrical activity. Seventeen recreationally active males completed maximal isokinetic concentric and eccentric knee flexor strength assessments at 1800.s-1 before and after repeat sprint running. Myoelectrical activity of the biceps femoris (BF) and medial hamstrings (MH) was measured during all isokinetic contractions. Repeated measures mixed model (Fixed factors = time [pre- and post- repeat sprint] and leg [dominant and non-dominant], random factor = participants) design was fitted with the restricted maximal likelihood method. Repeat sprint running resulted in significant declines in eccentric, and concentric, knee flexor strength (eccentric = 25 ± 34 Nm, 15% p<0.001; concentric 11 Nm± 22 Nm, 10% p = 0.001). Eccentric BF myoelectrical activity was significantly reduced (10%; p= 0.033). Concentric BF and all MH myoelectrical activity were not altered. The declines in maximal eccentric torque were associated with the change in eccentric biceps femoris myoelectrical activity (p = 0.013). Following repeat sprint running there were preferential declines in the myoelectrical activity of the BF, which explained declines in eccentric knee flexor strength.
Resumo:
Purpose Is eccentric hamstring strength and between limb imbalance in eccentric strength, measured during the Nordic hamstring exercise, a risk factor for hamstring strain injury (HSI)? Methods Elite Australian footballers (n=210) from five different teams participated. Eccentric hamstring strength during the Nordic was taken at the commencement and conclusion of preseason training and in season. Injury history and demographic data were also collected. Reports on prospectively occurring HSIs were completed by team medical staff. Relative risk (RR) was determined for univariate data and logistic regression was employed for multivariate data. Results Twenty-eight HSIs were recorded. Eccentric hamstring strength below 256N at the start of preseason and 279N at the end of preseason increased risk of future HSI 2.7 (relative risk, 2.7; 95% confidence interval, 1.3 to 5.5; p = 0.006) and 4.3 fold (relative risk, 4.3; 95% confidence interval, 1.7 to 11.0; p = 0.002) respectively. Between limb imbalance in strength of greater than 10% did not increase the risk of future HSI. Univariate analysis did not reveal a significantly greater relative risk for future HSI in athletes who had sustained a lower limb injury of any kind within the last 12 months. Logistic regression revealed interactions between both athlete age and history of HSI with eccentric hamstring strength, whereby the likelihood of future HSI in older athletes or athletes with a history of HSI was reduced if an athlete had high levels of eccentric strength. Conclusion Low levels of eccentric hamstring strength increased the risk of future HSI. Interaction effects suggest that the additional risk of future HSI associated with advancing age or previous injury was mitigated by higher levels of eccentric hamstring strength.
Resumo:
Background Hamstring strain injuries (HSIs) are the most common injury type in Australian football and the rate of recurrence has been consistently high for a number of years. Long lasting neuromuscular inhibition has been noted in previously injured athletes but it is not known if this influences athletes adaptive response to training. Purpose To determine if elite Australian footballers with a prior unilateral HSI (previously injured group) display lesser improvements in eccentric hamstring strength during pre-season training compared to athletes without a history of HSI (control group). Study design Prospective cohort study. Methods Ninety-nine elite Australian footballers participated (17 with a history of unilateral HSI in the previous 12 month period). Eccentric hamstring strength was assessed at the start and end of pre-season training using an instrumented Nordic hamstring device. Change in eccentric strength across preseason was determine in absolute terms and normalised to start of preseason strength. Start of preseason strength was used as a covariate to control for differences in starting strength. Results The left and right limbs in the control group showed no difference in absolute or relative change (left limb absolute change, 60.7±72.9N; relative change, 1.28±0.34; right limb absolute change, 48.6±83.8N; relative change, 1.24±0.43) . Similarly, the injured and uninjured limbs from the previously injured group showed no difference for either absolute or relative measures of change (injured limb absolute change, 13.1±57.7N; relative change, 1.07±0.18; uninjured limb absolute change, 14.7±54.0N; relative change, 1.07±0.22N). The previously injured group displayed a significantly lesser increase in eccentric hamstring strength across the preseason (absolute change, 13.9±55.0; relative change, 1.07±0.20) compared to the control group (absolute change, 54.6±78.5; relative change, 1.26±0.39) for both absolute and relative measures (p < 0.001), even after controlling for differences in start of pre-season eccentric hamstring strength, which had a significant effect on strength improvement. Conclusion Elite Australian footballers with a unilateral HSI history displayed lesser improvements in eccentric hamstring strength across preseason training. The smaller improvements were not restricted to the previously injured limb as the contralateral limb also displayed similarly small improvements in eccentric strength. Whether this is the cause of or the result of injury remains to be seen, but it has the potential to contribute to the risk of hamstring strain re-injury.