971 resultados para drug distribution
Resumo:
Introduction: Acinetobacter baumannii is opportunistic in debilitated hospitalised patients. Because information from some South American countries was previously lacking, this study examined the emergence of multi-resistant A. baumannii in three hospitals in Cochabamba, Bolivia, from 2008 to 2009. Methodology: Multiplex PCR was used to identify the main resistance genes in 15 multi-resistant A. baumannii isolates. RT-PCR was used to measure gene expression. The genetic environment of these genes was also analysed by PCR amplification and sequencing. Minimum inhibitory concentrations were determined for key antibiotics and some were determined in the presence of an efflux pump inhibitor, 1-(1-napthylmethyl) piperazine. Results: Fourteen strains were found to be multi-resistant. Each strain was found to have the bla(OXA-58) gene with the ISAba3-like element upstream, responsible for over-expression of the latter and subsequent carbapenem resistance. Similarly, ISAba1, upstream of the bla(ADC) gene caused over-expression of the latter and cephalosporin resistance; mutations in the gyrA(Ser83 to Leu) and parC (Ser-80 to Phe) genes were commensurate with fluoroquinolone resistance. In addition, the adeA, adeB efflux genes were over-expressed. All 15 isolates were positive for at least two aminoglycoside resistance genes. Conclusion: This is one of the first reports analyzing the multi-drug resistance profile of A. baumannii strains isolated in Bolivia and shows that the over-expression of thebla(OXA-58), bla(ADC) and efflux genes together with aminoglycoside modifying enzymes and mutations in DNA topoisomerases are responsible for the multi-resistance of the bacteria and the subsequent difficulty in treating infections caused by them.
Resumo:
The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.
Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.
Resumo:
Background: Neonatal trials remain difficult to conduct for several reasons: in particular the need for study sites to have an existing infrastructure in place, with trained investigators and validated quality procedures to ensure good clinical, laboratory practices and a respect for high ethical standards. The objective of this work was to identify the major criteria considered necessary for selecting neonatal intensive care units that are able to perform drug evaluations competently. Methodology and Main Findings: This Delphi process was conducted with an international multidisciplinary panel of 25 experts from 13 countries, selected to be part of two committees (a scientific committee and an expert committee), in order to validate criteria required to perform drug evaluation in neonates. Eighty six items were initially selected and classified under 7 headings: "NICUs description - Level of care'' (21), "Ability to perform drug trials: NICU organization and processes (15), "Research Experience'' (12), "Scientific competencies and area of expertise'' (8), "Quality Management'' (16), "Training and educational capacity'' (8) and "Public involvement'' (6). Sixty-one items were retained and headings were rearranged after the first round, 34 were selected after the second round. A third round was required to validate 13 additional items. The final set includes 47 items divided under 5 headings. Conclusion: A set of 47 relevant criteria will help to NICUs that want to implement, conduct or participate in drug trials within a neonatal network identify important issues to be aware of. Summary Points: 1) Neonatal trials remain difficult to conduct for several reasons: in particular the need for study sites to have an existing infrastructure in place, with trained investigators and validated quality procedures to ensure good clinical, laboratory practices and a respect for high ethical standards. 2) The present Delphi study was conducted with an international multidisciplinary panel of 25 experts from 13 countries and aims to identify the major criteria considered necessary for selecting neonatal intensive care units (NICUs) that are able to perform drug evaluations competently. 3) Of the 86 items initially selected and classified under 7 headings - "NICUs description - Level of care'' (21), "Ability to perform drug trials: NICU organization and processes (15), "Research Experience'' (12), "Scientific competencies and area of expertise'' (8), "Quality Management'' (16), "Training and educational capacity'' (8) and "Public involvement'' (6) - 47 items were selected following a three rounds Delphi process. 4) The present consensus will help NICUs to implement, conduct or participate in drug trials within a neonatal network.
Resumo:
An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.
Resumo:
Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.
Resumo:
Depression is among the leading causes of disability worldwide. Currently available antidepressant drugs have unsatisfactory efficacy, with up to 60% of depressed patients failing to respond adequately to treatment. Emerging evidence has highlighted a potential role for the efflux transporter P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), in the aetiology of treatment-resistant depression. In this thesis, the potential of P-gp inhibition as a strategy to enhance the brain distribution and pharmacodynamic effects of antidepressant drugs was investigated. Pharmacokinetic studies demonstrated that administration of the P-gp inhibitors verapamil or cyclosporin A (CsA) enhanced the BBB transport of the antidepressants imipramine and escitalopram in vivo. Furthermore, both imipramine and escitalopram were identified as transported substrates of human P-gp in vitro. Contrastingly, human P-gp exerted no effect on the transport of four other antidepressants (amitriptyline, duloxetine, fluoxetine and mirtazapine) in vitro. Pharmacodynamic studies revealed that pre-treatment with verapamil augmented the behavioural effects of escitalopram in the tail suspension test (TST) of antidepressant-like activity in mice. Moreover, pre-treatment with CsA exacerbated the behavioural manifestation of an escitalopram-induced mouse model of serotonin syndrome, a serious adverse reaction associated with serotonergic drugs. This finding highlights the potential for unwanted side-effects which may occur due to increasing brain levels of antidepressants by P-gp inhibition, although further studies are needed to fully elucidate the mechanism(s) at play. Taken together, the research outlined in this thesis indicates that P-gp may restrict brain concentrations of escitalopram and imipramine in patients. Moreover, we show that increasing the brain distribution of an antidepressant by P-gp inhibition can result in an augmentation of antidepressant-like activity in vivo. These findings raise the possibility that P-gp inhibition may represent a potentially beneficial strategy to augment antidepressant treatment in clinical practice. Further studies are now warranted to evaluate the safety and efficacy of this approach.
Resumo:
Osteoarthritis (OA) is a degenerative joint disease that can result in joint pain, loss of joint function, and deleterious effects on activity levels and lifestyle habits. Current therapies for OA are largely aimed at symptomatic relief and may have limited effects on the underlying cascade of joint degradation. Local drug delivery strategies may provide for the development of more successful OA treatment outcomes that have potential to reduce local joint inflammation, reduce joint destruction, offer pain relief, and restore patient activity levels and joint function. As increasing interest turns toward intra-articular drug delivery routes, parallel interest has emerged in evaluating drug biodistribution, safety, and efficacy in preclinical models. Rodent models provide major advantages for the development of drug delivery strategies, chiefly because of lower cost, successful replication of human OA-like characteristics, rapid disease development, and small joint volumes that enable use of lower total drug amounts during protocol development. These models, however, also offer the potential to investigate the therapeutic effects of local drug therapy on animal behavior, including pain sensitivity thresholds and locomotion characteristics. Herein, we describe a translational paradigm for the evaluation of an intra-articular drug delivery strategy in a rat OA model. This model, a rat interleukin-1beta overexpression model, offers the ability to evaluate anti-interleukin-1 therapeutics for drug biodistribution, activity, and safety as well as the therapeutic relief of disease symptoms. Once the action against interleukin-1 is confirmed in vivo, the newly developed anti-inflammatory drug can be evaluated for evidence of disease-modifying effects in more complex preclinical models.
Resumo:
This study finds that the mean IRR for 1980-84 U.S. new drug introductions is 11.1%, and the mean NPV is 22 million (1990 dollars). The distribution of returns is highly skewed. The results are robust to plausible changes in the baseline assumptions. Our work is also compared with a 1993 study by the OTA. Despite some important differences in assumptions, both studies imply that returns for the average NCE are within one percentage point of the industry's cost of capital. This is much less than what is typically observed in analyses based on accounting data.
Resumo:
OBJECTIVE: This report updates our earlier work on the returns to pharmaceutical research and development (R&D) in the US (1980 to 1984), which showed that the returns distributions are highly skewed. It evaluates a more recent cohort of new drug introductions in the US (1988 to 1992) and examines how the returns distribution is emerging for drugs with life cycles concentrated in the 1990s versus the 1980s. DESIGN AND SETTING: Methods were described in detail in our earlier reports. The current sample included 110 new drug entities (including 28 orphan drugs), and sales data were obtained for the period 1988 to 1998, which represented between 7 and 11 years of sales for the drugs included. 20 years was chosen as the expected market life for this cohort, and a 2-step procedure was used to project future sales for the drugs--during the period until patent expiry and then beyond patent expiry until the 20-year time-horizon was completed. Thus, the values in the first half of the life cycle are essentially based on realised sales, while those in the second half are projected using information on patent expiry and other inputs. MAIN OUTCOME MEASURES AND RESULTS: Peak annual sales for the top decile of drugs introduced between 1988 and 1992 in the US amounted to almost $US1.1 billion compared with peak sales of less than $US175 million (1992 values) for the mean compound. In particular, the top decile accounted for 56% of overall sales revenue. Although the sales distributions were skewed in both our earlier and current analysis, the top decile in the later time-period exhibited more rapid rates of growth after launch, a peak that was more than 50% greater in real terms than for the 1980 to 1984 cohort, and a faster rate of expected decline in sales after patent expiry. One factor contributing to the distribution of sales revenues becoming more skewed over time is the orphan drug phenomenon (i.e. most of the orphan drugs are concentrated at the bottom of the distribution). CONCLUSION: The distribution of sales revenues for new drug compounds is highly skewed in nature. In this regard, the top decile of new drugs accounts for more than half of the total sales generated by the 1988 to 1992 cohort analysed. Furthermore, the distribution of sales revenues for this cohort is more skewed than that of the 1980 to 1984 cohort we analysed in previous research.
Resumo:
© 2012 by Oxford University Press. All rights reserved.This article reviews the extensive literature on R&D costs and returns. The first section focuses on R&D costs and the various factors that have affected the trends in real R&D costs over time. The second section considers economic studies on the distribution of returns in pharmaceuticals for different cohorts of new drug introductions. It also reviews the use of these studies to analyze the impact of policy actions on R&D costs and returns. The final section concludes and discusses open questions for further research.
Resumo:
Thermally stimulated current (TSC) spectroscopy is attracting increasing attention as a means of materials characterization, particularly in terms of measuring slow relaxation processes in solid samples. However, wider use of the technique within the pharmaceutical field has been inhibited by difficulties associated with the interpretation of TSC data, particularly in terms of deconvoluting dipolar relaxation processes from charge distribution phenomena. Here, we present evidence that space charge and electrode contact effects may play a significant role in the generation of peaks that have thus far proved difficult to interpret. We also introduce the use of a stabilization temperature in order to control the space charge magnitude. We have studied amorphous indometacin as a model drug compound and have varied the measurement parameters (stabilization and polarization temperatures), interpreting the changes in spectral composition in terms of charge redistribution processes. More specifically, we suggested that charge drift and diffusion processes, charge injection from the electrodes and high activation energy charge redistribution processes may all contribute to the appearance of shoulders and 'spurious' peaks. We present recommendations for eliminating or reducing these effects that may allow more confident interpretation of TSC data.
Resumo:
This article takes a multidimensional or biopsychosocial conception of drug dependency as its starting point. Within this analytical framework, we advocate making the intercultural dimension more visible, since it is essential for the design and implementation of integral intervention processes. We propose intercultural competence as a working model that can increase the capacities of institutions and professionals —a particularly important consideration in the case of social work— in order to effectively address the aforementioned cultural dimension. After an extensive review of the scientific literature, we have defined five processes that can contribute to strengthening an institution’s intercultural competence and four processes that can do the same for a professional’s intercultural competence. Though selected for application in the area of drug dependencies, all these processes can also prove useful in improving attention to any other kind of culturally diverse group or person.
Resumo:
Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA) and preformed photosensitisers. In this study, we investigated the potential of jet injection to deliver both ALA and a preformed photosensitiser (meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, TMP) into a defined volume of skin. Initial studies using a model hydrogel showed that as standoff distance is increased, injection depth decreases. As the ejected volume is increased, injection depth increases. It was also shown, for the first time, that, as injection solution viscosity was increased, for a given injection setting and standoff distance, both total depth of jet penetration, L-t, and depth at which the maximum width of the penetration pattern occurred, L-m, decreased progressively. For a standoff distance of zero, the maximum width of the penetration pattern, L-w, increased progressively with increasing viscosity at each of the injection settings. Conversely, when the standoff distance was 2.5 mm, L-w decreased progressively with increasing viscosity. Studies with neonate porcine skin revealed that an injection protocol comprising an 8.98 mPas solution, an arbitrary injection setting of 8 and a standoff distance of zero was capable of delivering photosensitisers to a volume of tissue (L-t of 2.91 mm, L-m of 2.14 mm, L-w of 5. 10 mm) comparable to that occupied by a typical nodular basal cell carcinoma. Both ALA and TMP were successfully delivered using jet injection, with peak tissue concentrations (67.3 mg cm(-3) and 5.6 mg cm(-3), respectively) achieved at a depth of around 1.0 mm and substantial reductions in drug concentration seen at depths below 3.0 mm. Consequently, jet injection may be suitable for selective targeting of ALA or preformed photosensitisers to skin tumours. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Resumo:
Affiliation: Louise Potvin: Groupe de recherche interdisciplinaire en santé, Faculté de médecine, Université de Montréal