946 resultados para distribution systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Electric power distribution systems, and particularly those with overhead circuits, operate radially but as the topology of the systems is meshed, therefore a set of circuits needs to be disconnected. In this context the problem of optimal reconfiguration of a distribution system is formulated with the goal of finding a radial topology for the operation of the system. This paper utilizes experimental tests and preliminary theoretical analysis to show that radial topology is one of the worst topologies to use if the goal is to minimize power losses in a power distribution system. For this reason, it is important to initiate a theoretical and practical discussion on whether it is worthwhile to operate a distribution system in a radial form. This topic is becoming increasingly important within the modern operation of electrical systems, which requires them to operate as efficiently as possible, utilizing all available resources to improve and optimize the operation of electric power systems. Experimental tests demonstrate the importance of this issue. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.
Resumo:
In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.
Resumo:
Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.
Resumo:
Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.
Resumo:
In developing countries many water distribution systems are branched networks with little redundancy. If any component in the distribution system fails, many users are left relying on secondary water sources. These sources oftentimes do not provide potable water and prolonged use leads to increased cases of water borne illnesses. Increasing redundancy in branched networks increases the reliability of the networks, but is oftentimes viewed as unaffordable. This paper presents a procedure for water system managers to use to determine which loops when added to a branch network provide the most benefit for users. Two methods are presented, one ranking the loops based on total number of users benefited, and one ranking the loops of number of vulnerable users benefited. A case study is presented using the water distribution system of Medina Bank Village, Belize. It was found that forming loops in upstream pipes connected to the main line had the potential to benefit the most users.
Resumo:
Water distribution systems are important for life saving facilities especially in the recovery after earthquakes. In this paper, a framework is discussed about seismic serviceability of water systems that includes the fragility evaluation of water sources of water distribution networks. Also, a case study is brought about the performance of a water system under different levels of seismic hazard. The seismic serviceability of a water supply system provided by EPANET is evaluated under various levels of seismic hazard. Basically, the assessment process is based on hydraulic analysis and Monte Carlo simulations, implemented with empirical fragility data provided by the American Lifeline Alliance (ALA, 2001) for both pipelines and water facilities. Represented by the Seismic Serviceability Index (Cornell University, 2008), the serviceability of the water distribution system is evaluated under each level of earthquakes with return periods of 72 years, 475 years, and 2475 years. The system serviceability under levels of earthquake hazard are compared with and without considering the seismic fragility of the water source. The results show that the seismic serviceability of the water system decreases with the growing of the return period of seismic hazard, and after considering the seismic fragility of the water source, the seismic serviceability decreases. The results reveal the importance of considering the seismic fragility of water sources, and the growing dependence of the system performance of water system on the seismic resilience of water source under severe earthquakes.
Resumo:
Two of the indicators of the UN Millennium Development Goals ensuring environmental sustainability are energy use and per capita carbon dioxide emissions. The increasing urbanization and increasing world population may require increased energy use in order to transport enough safe drinking water to communities. In addition, the increase in water use would result in increased energy consumption, thereby resulting in increased green-house gas emissions that promote global climate change. The study of multiple Municipal Drinking Water Distribution Systems (MDWDSs) that relates various MDWDS aspects--system components and properties--to energy use is strongly desirable. The understanding of the relationship between system aspects and energy use aids in energy-efficient design. In this study, components of a MDWDS, and/or the characteristics associated with the component are termed as MDWDS aspects (hereafter--system aspects). There are many aspects of MDWDSs that affect the energy usage. Three system aspects (1) system-wide water demand, (2) storage tank parameters, and (3) pumping stations were analyzed in this study. The study involved seven MDWDSs to understand the relationship between the above-mentioned system aspects in relation with energy use. A MDWDSs model, EPANET 2.0, was utilized to analyze the seven systems. Six of the systems were real and one was a hypothetical system. The study presented here is unique in its statistical approach using seven municipal water distribution systems. The first system aspect studied was system-wide water demand. The analysis involved analyzing seven systems for the variation of water demand and its impact on energy use. To quantify the effects of water use reduction on energy use in a municipal water distribution system, the seven systems were modeled and the energy usage quantified for various amounts of water conservation. It was found that the effect of water conservation on energy use was linear for all seven systems and that all the average values of all the systems' energy use plotted on the same line with a high R 2 value. From this relationship, it can be ascertained that a 20% reduction in water demand results in approximately a 13% savings in energy use for all seven systems analyzed. This figure might hold true for many similar systems that are dominated by pumping and not gravity driven. The second system aspect analyzed was storage tank(s) parameters. Various tank parameters: (1) tank maximum water levels, (2) tank elevation, and (3) tank diameter were considered in this part of the study. MDWDSs use a significant amount of electrical energy for the pumping of water from low elevations (usually a source) to higher ones (usually storage tanks). The use of electrical energy has an effect on pollution emissions and, therefore, potential global climate change as well. Various values of these tank parameters were modeled on seven MDWDSs of various sizes using a network solver and the energy usage recorded. It was found that when averaged over all seven analyzed systems (1) the reduction of maximum tank water level by 50% results in a 2% energy reduction, (2) energy use for a change in tank elevation is system specific, and (2) a reduction of tank diameter of 50% results in approximately a 7% energy savings. The third system aspect analyzed in this study was pumping station parameters. A pumping station consists of one or more pumps. The seven systems were analyzed to understand the effect of the variation of pump horsepower and the number of booster stations on energy use. It was found that adding booster stations could save energy depending upon the system characteristics. For systems with flat topography, a single main pumping station was found to use less energy. In systems with a higher-elevation neighborhood, however, one or more booster pumps with a reduced main pumping station capacity used less energy. The energy savings for the seven systems was dependent on the number of boosters and ranged from 5% to 66% for the analyzed five systems with higher elevation neighborhoods (S3, S4, S5, S6, and S7). No energy savings was realized for the remaining two flat topography systems, S1, and S2. The present study analyzed and established the relationship between various system aspects and energy use in seven MDWDSs. This aids in estimating the amount of energy savings in MDWDSs. This energy savings would ultimately help reduce Greenhouse gases (GHGs) emissions including per capita CO 2 emissions thereby potentially lowering the global climate change effect. This will in turn contribute to meeting the MDG of ensuring environmental sustainability.
Resumo:
Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.
Resumo:
Peer reviewed
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.