900 resultados para distal upper limb
Resumo:
Panda
Resumo:
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.
Resumo:
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury) -- The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement -- The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton -- This approximation is rough since their kinematic structures differ -- Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup -- Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains -- EIKPE has been tested with single DOFmovements of the wrist and elbow joints -- This paper presents the assessment of EIKPEwith elbow-shoulder compoundmovements (i.e., object prehension) -- Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage) -- The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compoundmovement execution, especially for the shoulder joint angles -- This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types --
Resumo:
BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.
Resumo:
La osteoporosis es una de las condiciones patológicas en mayor crecimiento a medida que la población de tercera edad aumenta, esto se traduce en fracturas por fragilidad como lo son las fracturas de radio distal y las fracturas de cadera, actualmente no se cuentas con datos de la población a estudio que correlacione este tipo de fracturas. Es un estudio retrospectivo de casos y controles donde se obtuvo un grupo de pacientes con fractura de cadera que consultaron a un hospital universitario de alta complejidad en la ciudad de Bogotá, se evaluó la presencia de antecedente de fractura de radio distal y se comparó con un grupo control de trauma en cadera. Se obtuvo un total de 325 casos (72,5%) y 123 (25%) controles. El promedio de edad fue de 81 años, el 70% de los pacientes en ambos grupos correspondió a mujeres. No hubo diferencia en cuanto a la prevalencia de tabaquismo, hipertensión arterial o diabetes en los grupos. No se encontraron diferencias significativas en cuanto a niveles de glicemia, calcio, vitamina D. La presencia de antecedente de fractura de radio distal en grupo con fractura de cadera fue del 7,1% encontrando un OR de 3,91 IC 95%(1,17– 13,10). La presencia de fractura de radio distal como antecedente es un predictor para la fractura de cadera en pacientes mayores. Se necesitan más estudios que correlacionen otras variables que pueden influir en la asociación para fractura de cadera y radio, para así identificar una población específica que se beneficie de un tratamiento temprano.
Resumo:
We investigated the effect of pneumatic pressure applied to the proximal musculature of the sheep foreleg on load at the site of a transverse osteotomy of the distal radius. The distal radii of 10 fresh sheep foreleg specimens were osteotomized and a pressure sensor was inserted between the two bone fragments. An inflatable cuff, connected to a second pressure sensor, was positioned around the proximal forelimb musculature and the leg then was immobilized in a plaster cast. The inflatable cuff was inflated and deflated repeatedly to various pressures. Measurements of the cuff pressure and corresponding change in pressure at the osteotomy site were recorded. The results indicated that application of pneumatic pressure to the proximal foreleg musculature produced a corresponding increase in load at the osteotomy site. For the cuff pressures tested (109.8-238.4 mm Hg), there was a linear correlation with the load at the osteotomy site with a gradient of 12 mm Hg/N. It is conceivable, based on the results of this study, that a technique could be developed to provide dynamic loading to accelerate fracture healing in the upper limb of humans.
Resumo:
Study Design: Case Study Series.---------- Introduction: Restriction of forearm rotation may be required for effective management and rehabilitation of the upper limb after trauma.---------- Purpose of the Study: To compare the effectiveness of four splints in restricting forearm rotation.---------- Methods: Muenster, Sugartong, antipronation distal radioulnar joint (DRUJ), and standard wrist splints were fabricated for five healthy participants. Active range of motion (AROM) in forearm pronation and supination was measured with a goniometer for each splint, at the initial point of sensory feedback and during exertion of maximal force.---------- Results: Repeated-measures analysis of variance indicated significant differences between splints for all four AROM measures. Post hoc paired t-tests showed that the Sugartong splint was significantly more restrictive in pronation than the Muenster splint. The antipronation DRUJ splint provided significantly greater restriction in pronation than the standard wrist splint. No splints immobilized the forearm completely.---------- Conclusions: The Sugartong splint is recommended for maximal restriction in pronation, but individual patient characteristics require consideration in splint choice.
Resumo:
This study investigated the Kinaesthetic Fusion Effect (KFE) that was first described by Craske and Kenny in 1981. It was reported that when, without vision, participants pressed a button that resulted in a probe simultaneously touching the contralateral limb at a displaced location, they perceived an apparent change in limb length. The current study did not fully replicate these earlier findings. Participants did not perceive any reduction in the sagittal separation of the button and probe following repeated exposure to the tactile stimuli that was present on both arms. However, a localised and partial medio-lateral fusion was observed, with the touched positions seeming closer together. In addition, tactile acuity was found to decrease progressively for distal positions of the upper limb and a foreshortening effect was found which may result from a line-of-sight judgment and represent a feature of the reporting method used. A number of years have elapsed since the description of the original KFE. Although frequently cited in the literature, there has been no further investigation into the mechanisms of action. The results of the current study are considered in light of more recent literature concerning intersensory integration. Future research should focus on further clarification for the specific conditions that must be present for a fusion effect to occur. Finally, this thesis will benefit future studies that require participants to report the perceived locations of the unseen limbs.
Resumo:
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results of the analysis revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.