910 resultados para display output
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Phage display technology is a powerful platform for the generation of highly specific human monoclonal antibodies (Abs) with potential use in clinical applications. Moreover, this technique has also proven to be a reliable approach in identifying and validating new cancer-related targets. For scientific or medical applications, different types of Ab libraries can be constructed. The use of Fab Immune libraries allows the production of high quality and affinity antigen-specific Abs. In this work, two immune human phage display IgG Fab libraries were generated from the Ab repertoire of 16 breast cancer patients, in order to obtain a tool for the development of new therapeutic Abs for breast cancer, a condition that has great impact worldwide. The generated libraries are estimated to contain more than 108 independent clones and a diversity over 90%. Libraries validation was pursued by selection against BSA, a foreign and highly immunogenic protein, and HER2, a well established cancer target. Preliminary results suggested that phage pools with affinity for these antigens were selected and enriched. Individual clones were isolated, however, it was not possible to obtain enough data to further characterize them. Selection against the DLL1 protein was also performed, once it is a known ligand of the Notch pathway, whose deregulation is associated to breast cancer, making it an interesting target for the generation of function-blocking Abs. Selection resulted in the isolation of a clone with low affinity and Fab expression levels. The validation process was not completed and further effort will have to be put in this task in the future. Although immune libraries concept implies limited applicability, the library reported here has a wide range of use possibilities, since it was not restrained to a single antigen but instead thought to be used against any breast cancer associated target, thus being a valuable tool.
Resumo:
AbstractPhage display is a high-throughput subtractive proteomic technology used for the generation and screening of large peptide and antibody libraries. It is based on the selection of phage-fused surface-exposed peptides that recognize specific ligands and demonstrate desired functionality for diagnostic and therapeutic purposes. Phage display has provided unmatched tools for controlling viral, bacterial, fungal, and parasitic infections, and allowed identification of new therapeutic targets to treat cancer, metabolic diseases, and other chronic conditions. This review presents recent advancements in serodiagnostics and prevention of leishmaniasis -an important tropical parasitic disease- achieved using phage display for the identification of novel antigens with improved sensitivity and specificity. Our focus is on theranostics of visceral leishmaniasis with the aim to develop biomarker candidates exhibiting both diagnostic and therapeutic potential to fight this important, yet neglected, tropical disease.
Resumo:
RESUMO: As células eucarióticas evoluíram um sistema de sinalização complexo que lhes permite responder aos sinais extracelulares e intracelulares. Desta forma, as vias de sinalização são essenciais para a sobrevivência da célula e do organismo, uma vez que regulam processos fundamentais, tais como o desenvolvimento, o crescimento, a imunidade, e a homeostase dos tecidos. A via de transdução de sinal Hedgehog (Hh) envolve o receptor Patched1 (Ptch1), que tem um efeito inibidor sobre a proteína Smoothened (Smo) na ausência dos seus ligandos, as proteínas Sonic hedgehog (Shh). Estas proteínas são reguladores fundamentais do desenvolvimento embrionário, como ilustrado pelas malformações drásticas observadas em embriões humanos e de murganho com perturbações da transdução de sinal da via Hh e que incluem polidactilia, defeitos craniofaciais e malformações ósseas. Igualmente importantes são as consequências da ativação inapropriada da via de sinalização Hh na formação de tumores. Curiosamente, os componentes desta via localizam-se nos cílios primários. Além disso, demonstrou-se que esta localização é crucial para a sinalização através da via Hh. Na presença dos ligandos, Ptch1 é internalizado e destinado a degradação ou sequestrado num compartimento da célula de onde não pode desempenhar o seu papel inibitório. A proteína Arl13b é uma pequena GTPase pertencente à família Arf/Arl da superfamília Ras de pequenas GTPases e foi implicada no síndrome de Joubert, uma ciliopatia caracterizada por ataxia congénita cerebelar, hipotonia, atrso mental e cardiopatia congénita. Murganhos deficientes para Arl13b, chamado hennin (hnn) morrem morrem prematuramente ao dia 13,5 de gestação (E13,5) e exibem anomalias morfológicas nos cílios que levam à interrupção da sinalização Hh. Além disso, a Arl13b está diretamente envolvida na regulação da via Hh, controlando a localização de vários componentes desta via nos cílios primários. Neste trabalho, mostramos que a Arl13b se localiza em circular dorsal ruffles (CDRs), que são estruturas de actina envolvidas em macropinocitose e internalização de recetores, e que regula a sua formação. Além disso, aprofundámos o conhecimento do processo de ativação da via de sinalização Hh, mostrando que as CDRs sequestram seletivamente e internalizam o recetor Ptch1. As CDRs formam-se minutos após ativação da via por ligandos Shh ou pelo agonista de Smo SAG e continuam a ser formadas a partir daí, sugerindo uma indução contínua da reorganização do citoesqueleto de actina quando a via está ativada. Observámos ainda que a inibição da formação de CDRs através do silenciamento de WAVE1, uma proteína necessária para a formação destas estruturas, resulta na diminuição da ativação da via de sinalização Hh. Além disso, o bloqueio da macropinocitose, que se segue ao fecho das CDRs, através do silenciamento de uma proteína necessária para a cisão de macropinossomas, nomeadamente a proteína BARS, tem um efeito semelhante. Estes resultados sugerem que as CDRs e a macropinocitose são necessárias para a ativação da via de sinalização Hh e indicam que esta via de internalização controla os níveis de sinal Hh. Durante o desenvolvimento, as células proliferativas dependem do cílio primário para a transdução de várias vias de sinalização. A via Hh induz a diferenciação do músculo cardíaco. Por conseguinte, os murganhos deficientes na via de sinalização Hh exibem uma variedade de defeitos de lateralidade, incluindo alteração do looping do coração, como pode ser visto em murganhos deficientes para Arl13b. Por conseguinte, investigámos o papel da Arl13b no desenvolvimento do coração. Mostramos que a Arl13b é altamente expressa no coração de embriões de murganho e de murganhos adultos ao nível do mRNA e da proteína. Além disso, o perfil de distribuição da Arl13b no coração segue o dos cílios primários, que são essenciais para o desenvolvimento cardíaco. Corações de murganhos hnn no estadio E12,5 mostram um canal átrio-ventricular aberto, espessamento da camada compacta ventricular e aumento do índice mitótico no ventrículo esquerdo. Além disso, um atraso de 1 a 2 dias no desenvolvimento é observado em corações de murganhos hnn, quando comparados com controlos selvagens no estadio E13,5. Assim, estes resultados sugerem que a Arl13b é necessária para o desenvolvimento embrionário do coração e que defeitos cardíacos podem contribuir para a letalidade embrionária de murganhos hnn. Em suma, foi estabelecido um novo mecanismo para a regulação dos níveis de superfície do recetor Ptch1, que envolve a remodelação do citoesqueleto de actina e a formação de CDRs após a ativação da via de sinalização Hh. Este mecanismo permite um feedback negativo que evita a repressão excessiva da via através da remoção de Ptch1 da superfície da célula. Além disso, determinou-se que uma mutação de perda de função na Arl13b causa defeitos cardíacos durante o desenvolvimento, possivelmente relacionados com a associação dos defeitos em cílios primários e na sinalização Hh, existentes em murganhos deficientes para Arl13b. A via de sinalização Hh tem tido um papel central entre as vias de sinalização, uma vez que a sua regulação é crucial para o funcionamento apropriada da célula. Assim, a descoberta de um novo mecanismo de tráfego através de macropinocitose e CDRs que controla a ativação e repressão da via de sinalização Hh traz novas perspetivas de como esta via pode ser regulada e pode ainda conduzir à identificação de novos alvos e estratégias terapêuticas. --------------------ABSTRACT: Eukaryotic cells have evolved a complex signaling system that allows them to respond to extracellular and intracellular cues. Signaling pathways are essential for cell and organism survival, since they regulate fundamental processes such as development, growth, immunity, and tissue homeostasis. The Hedgehog (Hh) pathway of signal transduction involves the receptor Patched1 (Ptch1), which has an inhibitory effect on Smoothened (Smo) in the absence of its ligands, the Sonic hedgehog (Shh) proteins. These proteins are fundamental regulators of embryonic development, as illustrated by the dramatic malformations seen in human and mouse embryos with perturbed Hh signal transduction that include polydactyly, craniofacial defects and skeletal malformations. Equally important are the consequences of inappropriate activation of the Hh signaling response in tumor formation. Interestingly, the components of this pathway localize to primary cilia. Moreover, it has been shown that this localization is crucial for Hh signaling. However, in the presence of the ligands, Ptch1 is internalized and destined for degradation or sequestered in a cell compartment where it no longer can play its inhibitory role. ADP-ribosylation factor-like (Arl) 13b, a small GTPase belonging to Arf/Arl family of the Ras superfamily of small GTPases has been implicated in Joubert syndrome, a ciliopathy characterized by congenital cerebellar ataxia, hypotonia, intellectual disability and congenital heart disease. Arl13b-deficient mice, called hennin (hnn) die at embryonic day 13.5 (E13.5) and display morphological abnormalities in primary cilia that lead to the disruption of Hh signaling. Furthermore, Arl13b is directly involved in the regulation of Hh signaling by controlling the localization of several components of this pathway to primary cilia. Here, we show that Arl13b localizes to and regulates the formation of circular dorsal rufles (CDRs), which are actin-basedstructures known to be involved in macropinocytosis and receptor internalization. Additionally, we extended the knowledge of the Hh signaling activation process by showing that CDRs selectively sequester and internalize Ptch1 receptors. CDRs are formed minutes after Hh activation by Shh ligands or the Smo agonist SAG and keep being formed thereafter, suggesting a continuous induction of actin reorganization when the pathway is switched on. Importantly, we observed that disruption of CDRs by silencing WAVE1, a protein required for CDR formation, results in down-regulation of Hh signaling activation. Moreover, the blockade of macropinocytosis, which follows CDR closure, through silencing of a protein necessary for the fission of macropinosomes, namely BARS has a similar effect. These results suggest that CDRs and macropinocytosis are necessary for activation of Hh signaling and indicate that this pathway of internalization controls Hh signal levels. During development, proliferating cells rely on the primary cilium for the transduction of several signaling pathways. Hh induces the differentiation of cardiac muscle. Accordingly, Hh-deficient mice display a variety of laterality defects, including alteration of heart looping, as seen in Arl13b-deficient mice. Therefore, we investigated the role of Arl13b in heart development. We show that Arl13b is highly expressed in the heart of both embryonic and adult mice at mRNA and protein levels. Also, Arl13b localization profile mimics that of primary cilia, which have been shown to be essential to early heart development. E12.5 hnn hearts show an open atrioventricular channel, increased thickening of the ventricular compact layer and increased mitotic index in the left ventricle. Moreover, a delay of 1 to 2 days in development is observed in hnn hearts, when compared to wild-type controls at E13.5. Hence, these results suggest that Arl13b is necessary for embryonic heart development and that cardiac defects might contribute to the embryonic lethality of hnn mice. Altogether, we established a novel mechanism for the regulation of Ptch1 surface levels, involving cytoskeleton remodeling and CDR formation upon Hh signaling activation. This mechanism allows a negative feedback loop that prevents excessive repression of the pathway by removing Ptch1 from the cell surface. Additionally, we determined that the Arl13b loss-offunction mutation causes cardiac defects during development, possibly related to the associated ciliary and Hh signaling defects found in Arl13b-deficient mice. Hh signaling has taken a center stage among the signaling pathways since its regulation is crucial for the appropriate output and function of the cell. Hence, the finding of a novel trafficking mechanism through CDRs and macropinocytosis that controls Hh signaling activation and repression brings new insights to how this pathway can be regulated and can lead to the discovery of novel therapeutic targets and strategies.
Resumo:
Notch is a conserved signalling pathway, which plays a crucial role in a multiple cellular processes such as stem cell self-renewal, cell division, proliferation and apoptosis. In mammalian, four Notch receptors and five ligands are described, where interaction is achieved through their extracellular domains, leading to a transcription activation of different target genes. Increased expression of Notch ligands has been detected in several types of cancer, including breast cancer suggesting that these proteins represent possible therapeutic targets. The goal of this work was to generate quality protein targets and, by phage display technology, select function-blocking antibodies specific for Notch ligands. Phage display is a powerful technique that allows the generation of highly specific antibodies to be used for therapeutics, and it has also proved to be a reliable approach in identifying and validating new cancer-related targets. Also, we aimed at solving the tri-dimensional structure of the Notch ligands alone and in complex with selected antibodies. In this work, the initial phase focused on the optimization of the expression and purification of a human Delta-like 1 ligand mutant construct (hDLL1-DE3), by refolding from E. coli inclusion bodies. To confirm the biological activity of the produced recombinant protein cellular functional studies were performed, revealing that treatment with hDLL1-DE3 protein led to a modulation of Notch target genes. In a second stage of this study, Antibody fragments (Fabs) specific for hDLL1-DE3 were generated by phage display, using the produced protein as target, in which one good Fab candidate was selected to determine the best expression conditions. In parallel, multiple crystallization conditions were tested with hDLL1-DE3, but so far none led to positive results.
Resumo:
The real convergence hypothesis has spurred a myriad of empirical tests and approaches in the economic literature. This Work Project intends to test for real output and growth convergence in all N(N-1)/2 possible pairs of output and output growth gaps of 14 Eurozone countries. This paper follows a time-series approach, as it tests for the presence of unit roots and persistence changes in the above mentioned pairs of output gaps, as well as for the existence of growth convergence with autoregressive models. Overall, significantly greater evidence has been found to support growth convergence rather than output convergence in our sample.
Resumo:
Dissertação de mestrado em Bioinformática
Resumo:
Tese de Doutoramento em Ciências da Literatura (área de especialização em Literatura Portuguesa).
Resumo:
Open Display Networks have the potential to allow many content creators to publish their media to an open-ended set of screen displays. However, this raises the issue of how to match that content to the right displays. In this study, we aim to understand how the perceived utility of particular media sharing scenarios is affected by three independent variables, more specifically: (a) the locativeness of the content being shared; (b) how personal that content is and (c) the scope in which it is being shared. To assess these effects, we composed a set of 24 media sharing scenarios embedded with different treatments of our three independent variables. We then asked 100 participants to express their perception of the relevance of those scenarios. The results suggest a clear preference for scenarios where content is both local and directly related to the person that is publishing it. This is in stark contrast to the types of content that are commonly found in public displays, and confirms the opportunity that open displays networks may represent a new media for self-expression. This novel understanding may inform the design of new publication paradigms that will enable people to share media across the display networks.
Resumo:
The aim of this work was to investigate the effect on a display gamut of varying the optical density and the position of the maximum sensitivity of the cones spectra of anomalous trichromatic observers. The anomalous cone spectral sensitivities were estimated for a set of varying optical density and maximum sensitivity spectra conditions and used to compute the display color gamut. The computed display gamut simulated for normal observers the chro- matic diversity perceived by anomalous observers. It was found that even small variations on the optical density and on the position of the maximum sensitivity spectra have an impact on the simulations of the display gamut for anomalous observers. It was also found that simulations for deuteroanomalous observers are the ones with greater impact if the estimation of the corresponding color display gamut is not carefully adjusted for the observer.
Resumo:
Doutoramento em Economia.
Resumo:
Extending the traditional input-output model to account for the environmental impacts of production processes reveals the channels by which environmental burdens are transmitted throughout the economy. In particular, the environmental input-output approach is a useful technique for quantifying the changes in the levels of greenhouse emissions caused by changes in the final demand for production activities. The inputoutput model can also be used to determine the changes in the relative composition of greenhouse gas emissions due to exogenous inflows. In this paper we describe a method for evaluating how the exogenous changes in sectorial demand, such as changes in private consumption, public consumption, investment and exports, affect the relative contribution of the six major greenhouse gases regulated by the Kyoto Protocol to total greenhouse emissions. The empirical application is for Spain, and the economic and environmental data are for the year 2000. Our results show that there are significant differences in the effects of different sectors on the composition of greenhouse emissions. Therefore, the final impact on the relative contribution of pollutants will basically depend on the activity that receives the exogenous shock in final demand, because there are considerable differences in the way, and the extent to which, individual activities affect the relative composition of greenhouse gas emissions. Keywords: Greenhouse emissions, composition of emissions, sectorial demand, exogenous shock.