950 resultados para discrete choice experiments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the so-called "multinomial discrete choice" model the focus of this paper is on the estimation problem of the parameters. Especially, the basic question arises how to carry out the point and interval estimation of the parameters when the model is mixed i.e. includes both individual and choice-specific explanatory variables while a standard MDC computer program is not available for use. The basic idea behind the solution is the use of the Cox-proportional hazards method of survival analysis which is available in any standard statistical package and provided a data structure satisfying certain special requirements it yields the MDC solutions desired. The paper describes the features of the data set to be analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The objective of the study is to explore preferences of gastroenterologists for biosimilar drugs in Crohn’s Disease and reveal trade-offs between the perceived risks and benefits related to biosimilar drugs. Method: Discrete choice experiment was carried out involving 51 Hungarian gastroenterologists in May, 2014. The following attributes were used to describe hypothetical choice sets: 1) type of the treatment (biosimilar/originator) 2) severity of disease 3) availability of continuous medicine supply 4) frequency of the efficacy check-ups. Multinomial logit model was used to differentiate between three attitude types: 1) always opting for the originator 2) willing to consider biosimilar for biological-naïve patients only 3) willing to consider biosimilar treatment for both types of patients. Conditional logit model was used to estimate the probabilities of choosing a given profile. Results: Men, senior consultants, working in IBD center and treating more patients are more likely to willing to consider biosimilar for biological-naïve patients only. Treatment type (originator/biosimilar) was the most important determinant of choice for patients already treated with biologicals, and the availability of continuous medicine supply in the case biological-naïve patients. The probabilities of choosing the biosimilar with all the benefits offered over the originator under current reimbursement conditions are 89% vs 11% for new patients, and 44% vs 56% for patients already treated with biological. Conclusions: Gastroenterologists were willing to trade between perceived risks and benefits of biosimilars. The continuous medical supply would be one of the major benefits of biosimilars. However, benefits offered in the scenarios do not compensate for the change from the originator to the biosimilar treatment of patients already treated with biologicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS: The Medman study was funded by the Department of Health for England and Wales and managed by a collaboration of the National Pharmaceutical Association, the Royal Pharmaceutical Society of Great Britain, the Company Chemist Association and the Co-operative Pharmacy Technical Panel, led by the Pharmaceutical Services Negotiating Committee. The research in this paper was undertaken while the lead author MT was undertaking a doctoral research fellowship jointly funded by the Economic and Social Research Council (ESRC) and the Medical Research Council (MRC). The Health Economics Research Unit (HERU), University of Aberdeen is funded by the Chief Scientific Office of the Scottish Government Health and Social Care Directorate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2016 John Wiley & Sons Ltd. Funding: our thanks go to NHS Education for Scotland for funding this programme of work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Australia is contributing to the global problem of antimicrobial resistance with one of the highest rates of antibiotic use amongst OECD countries. Data from the Australian primary healthcare sector suggests unnecessary antibiotics were prescribed for conditions that will resolve without it. If left unchecked, this will result in more resistant micro-organisms, against which antibiotics will be useless. There is a lack of understanding about what is influencing decisions to use antibiotics – what factors influences general practitioners (GPs) to prescribe antibiotics, consumers to seek antibiotics, and pharmacists to fill old antibiotic prescriptions? It is also not clear how these individuals trade-off between the possible benefits that antibiotics may provide in the immediate/short term, against the longer term societal risk of antimicrobial resistance. Method This project will investigate (a) what factors drive decisions to use antibiotics for GPs, pharmacists and consumers, and (b) how these individuals discount the future. Factors will be gleaned from published literature and from a qualitative phase using semi-structured interviews, to inform the development of Discrete Choice Experiments (DCEs). Three DCEs will be constructed – one for each group of interest – to allow investigation of which factors are more important in influencing (a) GPs to prescribe antibiotics, (b) consumers to seek antibiotics, and (c) pharmacists to fill legally valid but old or repeat prescriptions of antibiotics. Regression analysis will be conducted to understand the relative importance of these factors. A Time Trade Off exercise will be developed to investigate how these individuals discount the future, and whether GPs and pharmacists display the same extent of discounting the future, as consumers. Expected Results Findings from the DCEs will provide an insight into which factors are more important in driving decision making in antibiotic use for GPs, pharmacists and consumers. Findings from the Time Trade Off exercise will show what individuals are willing to trade for preserving the miracle of antibiotics. Conclusion The emergence of antibiotic resistance is inevitable. This research will expand on what is currently known about influencing desired behaviour change in antibiotic use, in the fight against antibiotic resistance. Real World Implications Research findings will contribute to existing national programs to bring about a reduction in inappropriate use of antibiotic in Australia. Specifically, influencing (1) how key messages and public health campaigns are crafted to increase health literacy, and (2) clinical education and empowerment of GPs and pharmacists to play a more responsive role as stewards of antibiotic use in the community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Australia has one of the highest rates of antibiotic use amongst OECD countries. Data from the Australian primary healthcare sector suggests unnecessary antibiotics were prescribed for self-resolving conditions. We need to better understand what drives general practitioners (GPs) to prescribe antibiotics, consumers to seek antibiotics, and pharmacists to fill repeat antibiotic prescriptions. It is also not clear how these individuals trade-off between the possible benefits that antibiotics may provide in the immediate/short term, against the longer term societal risk of antimicrobial resistance. This project investigates what factors drive decisions to use antibiotics for GPs, pharmacists and consumers, and how these individuals discount the future. Methods Factors will be gleaned from published literature and from semi-structured interviews, to inform the development of Discrete Choice Experiments (DCEs). Three DCEs will be constructed – one for each group of interest – to allow investigation of which factors are more important in influencing (a) GPs to prescribe antibiotics, (b) consumers to seek antibiotics, and (c) pharmacists to fill legally valid but old or repeat prescriptions of antibiotics. Regression analysis will be conducted to understand the relative importance of these factors. A Time Trade Off exercise will be developed to investigate how these individuals discount the future. Results Findings from the DCEs will provide an insight into which factors are more important in driving decision making in antibiotic use for GPs, pharmacists and consumers. Findings from the Time Trade Off exercise will show what individuals are willing to trade for preserving the miracle of antibiotics. Conclusion Research findings will contribute to existing national programs to bring about a reduction in inappropriate use of antibiotic in Australia. Specifically, influencing how key messages and public health campaigns are crafted, and clinical education and empowerment of GPs and pharmacists to play a more responsive role as stewards of antibiotic use in the community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For optimal solutions in health care, decision makers inevitably must evaluate trade-offs, which call for multi-attribute valuation methods. Researchers have proposed using best-worst scaling (BWS) methods which seek to extract information from respondents by asking them to identify the best and worst items in each choice set. While a companion paper describes the different types of BWS, application and their advantages and downsides, this contribution expounds their relationships with microeconomic theory, which also have implications for statistical inference. This article devotes to the microeconomic foundations of preference measurement, also addressing issues such as scale invariance and scale heterogeneity. Furthermore the paper discusses the basics of preference measurement using rating, ranking and stated choice data in the light of the findings of the preceding section. Moreover the paper gives an introduction to the use of stated choice data and juxtaposes BWS with the microeconomic foundations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the findings from a discrete-choice experiment designed to estimate the economic benefits associated with rural landscape improvements in Ireland. Using a mixed logit model, the panel nature of the dataset is exploited to retrieve willingness-to-pay values for every individual in the sample. This departs from customary approaches in which the willingness-to-pay estimates are normally expressed as measures of central tendency of an a priori distribution. Random-effects models for panel data are subsequently used to identify the determinants of the individual-specific willingness-to-pay estimates. In comparison with the standard methods used to incorporate individual-specific variables into the analysis of discrete-choice experiments, the analytical approach outlined in this paper is shown to add considerable explanatory power to the welfare estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Policymakers have largely replaced Single Bounded Discrete Choice (SBDC) valuation by the more statistically efficient repetitive methods; Double Bounded Discrete Choice (DBDC) and Discrete Choice Experiments (DCE) . Repetitive valuation permits classification into rational preferences: (i) a priori well-formed; (ii) consistent non-arbitrary values “discovered” through repetition and experience; (Plott, 1996; List 2003) and irrational preferences; (iii) consistent but arbitrary values as “shaped” by preceding bid level (Tufano, 2010; Ariely et al., 2003) and (iv) inconsistent and arbitrary values. Policy valuations should demonstrate behaviorally rational preferences. We outline novel methods for testing this in DBDC applied to renewable energy premiums in Chile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent ‘horse meat scandal’ in Europe has sparked huge concerns among consumers, as horse meat was found in beef lasagne ready to be consumed. Within STARTEC, a European funded project, this study investigates consumers’ preferences, attitudes and willingness to pay (WTP) towards characteristics of ready to heat (RTH) fresh lasagne, including origin of the meat, tested for meat authenticity, safety of the lasagne, and nutritional value, using Discrete Choice Experiments in six countries - Republic of Ireland, France, Italy, Spain, Germany and Norway. Our representative sample of 4,598 European consumers makes this the largest cross country study of this kind. The questionnaire was administered online in January 2014. Results from models in WTP-space show that, on average, consumers are willing to pay considerable amount (about €4-9) for food authenticity; on this Irish and Italian are the least concerned while Spanish are the most concerned. As expected from discussing with stakeholders, food safety claims and nutritional value of the RTH lasagne are relatively less important. Consumers also value knowing the origin of ingredients preferring locally sourced meat. Primarily, the results of this study present strong evidence that consumers in Europe are highly concerned about authenticity of the meat in ready meals and strongly prefer to know that the meat is national. This evidence suggests that there is great value in providing information on these attributes, both from a consumer perspective and where this leads to an increased consumer confidence has benefits for the food industry.