950 resultados para dipeptidyl peptidase IV
Resumo:
Depending on age, duration of diabetes and glycaemic control, 20-40% of patients with type 2 diabetes will incur a moderate or severe deterioration of renal function. This will impact the choice of blood glucose-lowering therapy and require more frequent monitoring of both renal function and glycaemic control. Moderate renal impairment (glomerular filtration rate 30-<60 ml/min) requires consideration of dose reduction or treatment cessation for metformin, glucagon-like peptide-1 receptor agonists, some sulphonylureas and some dipeptidyl peptidase-4 inhibitors. At lower rates of glomerular filtration down to about 15 ml/min it may be appropriate to use a meglitinide, pioglitazone or certain sulphonylureas with careful consideration of dose and co-morbidities. Dipeptidyl peptidase-4 inhibitors can be used at reduced dose in patients with very low rates of glomerular filtration, and linagliptin can be used without dose reduction, and has been used in patients on dialysis. Insulin can be used at any stage of renal impairment, but the regimen and the dose must be suitably adjusted and accompanied by adequate monitoring. © The Author(s), 2012.
Resumo:
The enteroinsular axis (EIA) constitutes a physiological signalling system whereby intestinal endocrine cells secrete incretin hormones following feeding that potentiate insulin secretion and contribute to the regulation of blood glucose homeostasis. The two key hormones responsible are named glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Recent years have witnessed sustained development of antidiabetic therapies that exploit the EIA. Current clinical compounds divide neatly into two classes. One concerns analogues or mimetics of GLP-1, such as exenatide (Byetta) or liraglutide (NN2211). The other group comprises the gliptins (e.g. sitagliptin and vildagliptin) which boost endogenous incretin activity by inhibiting the enzyme dipeptidyl peptidase 4 (DPP 4) that degrades both GLP-1 and GIP. Ongoing research indicates that further incretin and gliptin compounds will become available for clinical use in the near future, offering comparable or improved efficacy. For incretin analogues there is the prospect of prolonged duration of action and alternative routes of administration. This review focuses on recent advances in pre-clinical research and their translation into clinical studies to provide future therapies for type 2 diabetes targeting the EIA. © 2009 Bentham Science Publishers Ltd.
Resumo:
Background - To assess potentially elevated cardiovascular risk related to new antihyperglycemic drugs in patients with type 2 diabetes, regulatory agencies require a comprehensive evaluation of the cardiovascular safety profile of new antidiabetic therapies. We assessed cardiovascular outcomes with alogliptin, a new inhibitor of dipeptidyl peptidase 4 (DPP-4), as compared with placebo in patients with type 2 diabetes who had had a recent acute coronary syndrome. Methods - We randomly assigned patients with type 2 diabetes and either an acute myocardial infarction or unstable angina requiring hospitalization within the previous 15 to 90 days to receive alogliptin or placebo in addition to existing antihyperglycemic and cardiovascular drug therapy. The study design was a double-blind, noninferiority trial with a prespecified noninferiority margin of 1.3 for the hazard ratio for the primary end point of a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Results - A total of 5380 patients underwent randomization and were followed for up to 40 months (median, 18 months). A primary end-point event occurred in 305 patients assigned to alogliptin (11.3%) and in 316 patients assigned to placebo (11.8%) (hazard ratio, 0.96; upper boundary of the one-sided repeated confidence interval, 1.16; P<0.001 for noninferiority). Glycated hemoglobin levels were significantly lower with alogliptin than with placebo (mean difference, -0.36 percentage points; P<0.001). Incidences of hypoglycemia, cancer, pancreatitis, and initiation of dialysis were similar with alogliptin and placebo. Conclusions - Among patients with type 2 diabetes who had had a recent acute coronary syndrome, the rates of major adverse cardiovascular events were not increased with the DPP-4 inhibitor alogliptin as compared with placebo. (Funded by Takeda Development Center Americas; EXAMINE ClinicalTrials.gov number, NCT00968708.)
Resumo:
Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulforylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women. Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagonlike peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on P cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and bodyweight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-alpha/gamma agonists, or glitazars, is presently uncertain following concerns about their safety. In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.
Resumo:
OBJECTIVE: This 12-week study assessed the efficacy and tolerability of imeglimin as add-on therapy to the dipeptidyl peptidase-4 inhibitor sitagliptin in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. RESEARCH DESIGN AND METHODS: In a multicenter, randomized, double-blind, placebo-controlled, parallel-group study, imeglimin (1,500 mg b.i.d.) or placebo was added to sitagliptin (100 mg q.d.) over 12weeks in 170 patientswith type 2 diabetes (mean age 56.8 years; BMI 32.2 kg/m2) that was inadequately controlled with sitagliptin alone (A1C ≥7.5%) during a 12-week run-in period. The primary ef ficacy end point was the change in A1C from baseline versus placebo; secondary end points included corresponding changes in fasting plasma glucose (FPG) levels, strati fication by baseline A1C, and percentage of A1C responders. RESULTS: Imeglimin reduced A1C levels (least-squares mean difference) from baseline (8.5%) by 0.60% compared with an increase of 0.12% with placebo (between-group difference 0.72%, P < 0.001). The corresponding changes in FPG were -0.93 mmol/L with imeglimin vs. -0.11 mmol/L with placebo (P = 0.014). With imeglimin, the A1C level decreased by ≥0.5% in 54.3% of subjects vs. 21.6% with placebo (P < 0.001), and 19.8%of subjects receiving imeglimin achieved a decrease in A1C level of ≤7% compared with subjects receiving placebo (1.1%) (P = 0.004). Imeglimin was generally well tolerated, with a safety pro file comparable to placebo and no related treatment-emergent adverse events. CONCLUSIONS: Imeglimin demonstrated incremental efficacy benefits as add-on therapy to sitagliptin, with comparable tolerability to placebo, highlighting the potential for imeglimin to complement other oral antihyperglycemic therapies. © 2014 by the American Diabetes Association.
Resumo:
Several pharmacotherapies have recently become available for addition to lifestyle measures to assist the management of coexistent type 2 diabetes and obesity. These are mostly administered as add-on to metformin or as alternative therapies if metformin is not appropriate. The sodium–glucose cotransporter 2 inhibitors (dapagliflozin, canagliflozin and empagliflozin) act by eliminating excess glucose in the urine. These agents provide a non-insulin-dependent mechanism to reduce hyperglycaemia and facilitate weight loss without causing frank hypoglycaemia. Their efficacy requires the individual to have adequate renal function. The glucagon-like peptide-1 (GLP-1) receptor agonists (exenatide, liraglutide, lixisenatide, dulaglutide and albiglutide [the last at the pre-launch stage at the time of writing]) are injected subcutaneously. Different members of the class offer different time courses for their onset and duration of action. Each potentiates insulin secretion and reduces glucagon secretion in a glucose-dependent manner to address prandial glycaemic excursions while avoiding interprandial hypoglycaemia. A satiety effect of these agents assists weight reduction, but delayed gastric emptying can cause initial nausea. The dipeptidyl peptidase-4 inhibitor class now comprises sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin. These agents offer similar glucose-lowering efficacy without weight gain or hypoglycaemia by boosting the half-life of endogenous incretins, particularly GLP-1. A fixed-ratio injected combination of insulin degludec with liraglutide (IDegLira) has recently been launched and further agents to address hyperglycaemia and assist weight loss are advancing in development.
Resumo:
Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies.
Resumo:
To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, intra- and inter-seasonal activity levels of acid (APA), basic (APB), puromycin-sensitive (APN-PS) and puromycin-insensitive neutral (APN-PI), cystyl (CAP), dipeptidyl-IV (DPPIV), type-1 pyroglutamyl (PAP-I) and prolyl-imino (PIP) aminopeptidases as well as prolyl endopeptidase (POP) were evaluated in soluble (SF) and/or membrane-bound (MF) fractions of semen collected from the ductus deferens of the male reproductive tract and from the posterior portion of the uterus. Seminal APB, PIP and POP were detected in SF, while other peptidases were detected in SF and MF. Only the convoluted posterior uterus in winter and autumn had semen. Relative to other examined peptidases, in general, APN-PI, APN-PS and APB activities were predominant in the semen from the uterus and throughout the year in the semen from the ductus deferens, suggesting their great relevance in the seminal physiology of C. d. terrificus. The levels of peptidase activities in the ductus deferens semen varied seasonally and were different from those of semen in the uterus, suggesting that their modulatory actions on susceptible peptides are integrated to the male reproductive cycle events and spermatozoa viability of this snake.
Seasonal variation of peptidase activities in the reproductive tract of Crotalus durissus terrificus
Resumo:
Seasonal quantitative patterns of acid (APA), basic (APB), puromycin-sensitive (APN-PS) and puromycin-insensitive neutral (APN-PI), cystyl (CAP), dipeptidyl IV (DPPIV), type-1 pyroglutamyl (PAP-I) and prolylimino (PIP) aminopeptidases and prolyl oligopeptidase (POP) activities in soluble (SF) and solubilized membrane-bound (MF) fractions from ductus deferens, vagina and uterus were studied to evaluate their relationships with the reproductive cycle and the extensive long-term spermatozoa storage (LTSS) of the Neotropical rattlesnake Crotalus durissus terrificus. APB, PIP and POP were detected only in SF, while other peptidases were detected in SF and MF. APB, APN-PI and APN-PS were predominant in most tissues in all seasons. Peptidase activities had a common pattern of increment during the dry season (winter/autumn), which coincides with the mating period (autumn) and LTSS in the female (winter), as well as the reduction of spermatozoa motility and maintenance of fertilization capacity of spermatozoa. The high CAP activity in the soluble fraction of the vagina during winter, compared to summer (time of parturition) and spring, coincides with the relaxation of this tissue. In the soluble fraction, the low PAP-1 activity of the ductus deferens coincided with its high activity in the vagina during the winter; and the inverse occurred in summer, which is consistent with the physiological process of preserving spermatozoon viability. In conclusion, the studied peptidase activities had seasonal and tissue-specific characteristics, which suggest a relevant role in the reproductive physiology of C. d. terrificus. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, activity levels of representative enzymes in semen and their sensitivities to inhibitors, cofactors, and peptide hormones were evaluated. The existence of seminal fractions and the association of peptidases with these fractions were also characterized for the first time in snakes. The prominent inhibitors of aminopeptidases (APs) were amastatin for acid, basic, and neutral; bestatin for basic; and diprotin A for dipeptidyl-IV. Cystyl and prolylimino AN were similarly susceptible to the majority of these inhibitors. The basic and neutral were characterized as metallo-peptidases, acid AP was activated by MnCl(2), and cystyl, prolyl-imino, and type I pyroglutamyl were characterized as sulphydryl-dependent APs. Angiotensin II, vasotocin, bradykinin, fertilization-promoting peptide, and TRH altered the majority of these peptidase activities; these peptides are possible substrates and/or modulators of these peptidases. Peptidase activities were found in all seminal fractions: seminal plasma (SP), prostasome-like (PR) structures, and soluble (S-) and membrane-bound fractions (MFs) of spermatozoa. The levels of activity of each peptidase varied among different seminal fractions. In SP, the higher activities were puromycin-insensitive neutral and basic APs. in PR, the higher activity was puromycin-insensitive neutral AP. In spermatozoa, the higher activity in subcellular SF was puromycin-sensitive neutral, while in MF both puromycin-sensitive and -insensitive neutral AN were equally higher than the other examined peptidases. Data suggested that these peptidases, mainly basic and neutral, have a high relevance in regulating seminal functions of C. d. terrificus.
Resumo:
Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.
Resumo:
Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.
Resumo:
Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.
Resumo:
The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.
Resumo:
The DNA damage induced by S(IV) in the presence of some Cu(II) complexes in air saturated solution was investigated. The addition of S(IV) to an air saturated solution containing CuII GGA (GGA = glycylglycyl-L-alanine), CuII G3 (G3 = triglycine) or CuII G4 (G4 = tetraglycine) and Ni(II) traces, causes rapid formation of the respective Cu(III) complex, with simultaneous O2 uptake and S(IV) oxidation. SO3•- and HO• were detected by EPR-spin trapping experiments. The DNA strand breaks were attributed to the oxysulfur radicals formed. In the reduction of Cu(II)/BCA (BCA = 4,4' dicarboxy-2-2'-biquinoline) by S(IV), with CuI BCA complex formation, there is the possible formation of carbon centered radical of BCA or peroxyl radical (ROO•) capable of oxidizing DNA bases. The intensity of DNA damage in the presence of these Cu(II) complexes and S(IV) (10-300 µmol L-1) followed the order: CuII BCA ∼ CuII G4 ∼ Cu(II) (added as Cu(NO3)2) > CuII G3 ∼ CuII GGA. Specifically for CuII BCA the damage occurred even at lower S(IV) concentration (0.1 µmol L-1). For the Cu(II) complexes with glycylglycylhistidine, glycylhistidylglycine, glycylhistidyllysine and glycylglycyltyrosylarginine the Cu(III) formation and the DNA damage was not observed.