941 resultados para digitalization of cuny special collection
Resumo:
This work studied the combined use of gliadins and SSRs to analyse inter- and intra-accession variability of the Spanish collection of cultivated einkorn (Triticum monococcum L. ssp. monococcum) maintained at the CRF-INIA. In general, gliadin loci presented higher discrimination power than SSRs, reflecting the high variability of the gliadins. The loci on chromosome 6A were the most polymorphic with similar PIC values for both marker systems, showing that these markers are very useful for genetic variability studies in wheat. The gliadin results indicated that the Spanish einkorn collection possessed high genetic diversity, being the differentiation large between varieties and small within them. Some associations between gliadin alleles and geographical and agro-morphological data were found. Agro-morphological relations were also observed in the clusters of the SSRs dendrogram. A high concordance was found between gliadins and SSRs for genotype identification. In addition, both systems provide complementary information to resolve the different cases of intra-accession variability not detected at the agro-morphological level, and to identify separately all the genotypes analysed. The combined use of both genetic markers is an excellent tool for genetic resource evaluation in addition to agro-morphological evaluation.
Resumo:
The objectives of this study were to assess diversity and genetic structure of a collection of Spanish durum wheat (Triticum turgidum L) landraces, using SSRs, DArTs and gliadin-markers, and to correlate the distribution of diversity with geographic and climatic features, as well as agro-morphological traits. A high level of diversity was detected in the genotypes analyzed, which were separated into nine populations with a moderate to great genetic divergence among them. The three subspecies taxa, dicoccon, turgidum and durum, present in the collection, largely determined the clustering of the populations. Genotype variation was lower in dicoccon (one major population) and turgidum (two major populations) than in durum (five major populations). Genetic differentiation by the agro-ecological zone of origin was greater in dicoccon and turgidum than in durum. DArT markers revealed two geographic substructures, east-west for dicoccon and northeast-southwest for turgidum. The ssp. durum had a more complex structure, consisting of seven populations with high intra-population variation. DArT markers allowed the detection of subgroups within some populations, with agro-morphological and gliadin differences, and distinct agro-ecological zones of origin. Two different phylogenetic groups were detected; revealing that some durum populations were more related to ssp. turgidum from northern Spain, while others seem to be more related to durum wheats from North Africa
Resumo:
In tethered satellite technology, it is important to estimate how many electrons a spacecraft can collect from its ambient plasma by a bare electrodynamic tether. The analysis is however very difficult because of the small but significant Geo-magnetic field and the spacecraft’s relative motion to both ions and electrons. The object of our work is the development of a numerical method, for this purpose. Particle-In-Cell (PIC) method, for the calculation of electron current to a positive bare tether moving at orbital velocity in the ionosphere, i.e. in a flowing magnetized plasma under Maxwellian collisionless conditions. In a PIC code, a number of particles are distributed in phase space and the computational domain has a grid on which Poisson equation is solved for field quantities. The code uses the quasi-neutrality condition to solve for the local potential at points in the plasma which coincide with the computational outside boundary. The quasi-neutrality condition imposes ne - ni on the boundary. The Poisson equation is solved in such a way that the presheath region can be captured in the computation. Results show that the collected current is higher than the Orbital Motion Limit (OML) theory. The OML current is the upper limit of current collection under steady collisionless unmagnetized conditions. In this work, we focus on the flowing effects of plasma as a possible cause of the current enhancement. A deficit electron density due to the flowing effects has been worked and removed by introducing adiabatic electron trapping into our model.
Resumo:
Lithographed.