925 resultados para diffusion of
Resumo:
In this study, we review the literature on the creation and diffusion of innovation in the private sectors (industry and services) in developing countries. In particular, we collect evidence on what are the barriers to innovation creation and diffusion and the channels of innovation diffusion to and within developing countries. We find that innovation in developing countries is about creation or adoption of new ideas and technologies; but the capacity for innovation is embedded in and constituted by dynamics between geographical, socio-economic, political and legal subsystems. We contextualize the findings from the review in the current theoretical framework of diffusion of innovations, and we emphasize how the institutional context typical of developing countries impacts the diffusion itself.
Resumo:
The UK government is mandating the use of building information modelling (BIM) in large public projects by 2016. As a result, engineering firms are faced with challenges related to embedding new technologies and associated working practices for the digital delivery of major infrastructure projects. Diffusion of innovations theory is used to investigate how digital innovations diffuse across complex firms. A contextualist approach is employed through an in-depth case study of a large, international engineering project-based firm. The analysis of the empirical data, which was collected over a four-year period of close interaction with the firm, reveals parallel paths of diffusion occurring across the firm, where both the innovation and the firm context were continually changing. The diffusion process is traced over three phases: centralization of technology management, standardization of digital working practices, and globalization of digital resources. The findings describe the diffusion of a digital innovation as multiple and partial within a complex social system during times of change and organizational uncertainty, thereby contributing to diffusion of innovations studies in construction by showing a range of activities and dynamics of a non-linear diffusion process.
Resumo:
Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.
Resumo:
The Transition Network exemplifies the potential of social movements to create spaces of possibility for alternatives to emerge in the interstices of mainstream, neoliberal economies. Yet, little work has been carried out so far on the Transition Network or other grassroots innovations for sustainability in a way that reveals their actual patterns of diffusion. This graphic of the diffusion of the Transition Network visualises its spatial structure and compare diffusion patterns across Italy, France, Great Britain and Germany. The graphics show that the number of transition initiatives in the four countries has steadily increased over the past eight years, but the rate of increase has slowed down in all countries. The maps clearly show that in all four countries the diffusion of the Transition Network has not been spatially even. The graphic suggests that in each country transition initiatives are more likely to emerge in some geographical areas (hotspots) than in others (cold spots). While the existence of a spatial structure of the Transition Network may result from the combination of place-specific factors and diffusion mechanisms, these graphics illustrate the importance of better comprehending where grassroots innovations emerge.
Resumo:
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
Resumo:
In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.
Resumo:
Despite several examples of deployed agent systems, there remain barriers to the large-scale adoption of agent technologies. In order to understand these barriers, this paper considers aspects of marketing theory which deal with diffusion of innovations and their relevance to the agents domain and the current state of diffusion of agent technologies. In particular, the paper examines the role of standards in the adoption of new technologies, describes the agent standards landscape, and compares the development and diffusion of agent technologies with that of object-oriented programming. The paper also reports on a simulation model developed in order to consider different trajectories for the adoption of agent technologies, with trajectories based on various assumptions regarding industry structure and the existence of competing technology standards. We present details of the simulation model and its assumptions, along with the results of the simulation exercises.
Resumo:
Titanium alloys are excellent implant materials for orthopedic applications due to their desirable properties, such as good corrosion resistance, low elasticity modulus, and excellent biocompatibility. The presence of interstitial elements (such as oxygen and nitrogen) causes strong changes in the material's mechanical properties, mainly in its elastic properties. Study of the interaction among interstitial elements present in metals began with Snoek's postulate, that a stress-induced ordering of interstitials gives rise to a peak in the mechanical relaxation (internal friction) spectra. In the mechanical relaxation spectra, each species of interstitial solute atom gives rise to a distinct Snoek's peak, whose temperature and position depend on the measurement frequency. This effect is very interesting because its peculiar parameters are directly related to the diffusion coefficient (D) for the interstitial solute. This paper presents a study of diffusion of heavy interstitial elements in Ti-35Nb-7Zr-5Ta alloys using mechanical spectroscopy. Pre-exponential factors and activation energies are calculated for oxygen and nitrogen in theses alloys.
Resumo:
Metals with a bcc crystalline structure such as Ti-13V-11Cr-3Al alloys have their physical properties significantly changed through the addition of interstitial elements such as oxygen and nitrogen. These metals can dissolve substantial amounts of interstitial elements forming solid solutions. Mechanical spectroscopy measurements constitute a powerful tool for studying interactions of these interstitial elements with other elements that make up the alloy. From these measurements, it is possible to obtain information regarding diffusion, interstitial concentration, interaction between interstitials, and other imperfections of the crystalline lattice, In this paper, Ti-13V-11Cr-3Al alloys with several amount of nitrogen, in a solid solution, were studied using mechanical spectroscopy (internal friction) measurements. The results presented complex internal friction spectra which were resolved in a series of constituent Debye peaks corresponding to different interactions and interstitial diffusion coefficients. Pre-exponential factors and activation energies were calculated for nitrogen in theses alloys.
Resumo:
The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.
Resumo:
The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.
Resumo:
The release and diffusion of hydroxyl ions (OH-) of calcium hydroxide (Ca(OH)2)-based intracanal medications may be affected by the association with other substances. The aim of this study was to evaluate the diffusion of OH- ions through root dentin by the medications: G1, Ca(OH)2/saline; G2, Calen; G3, Calen/camphorated p-monochlorophenol (CMCP); and G4, Calen/0.4% chlorhexidine (CHX). Root canals from bovine teeth were prepared in a standardized manner. A cavity until dentin was prepared in the middle third of the root surface of each specimen. The external surface of the root was made impermeable using a layer of adhesive, except the prepared cavity. The root canals were filled with different medications, and teeth were individually stored in flasks containing 10 ml distilled water at 37 degrees C. The water pH was measured at 1, 3, 7, 14, 21, 30, and 60 days. Data obtained were subjected to anova and Tukeys tests. Increase in pH was observed at 3 days for Calen/CHX and from 7 to 14 days for the other mixtures. Calen paste promoted pH increase up to 21 days. Calen/CMCP had the highest pH up to 21 days, and all groups had similar results at 30 days. At 60 days, the greatest pH values were observed for Calen/CMCP and Calen alone. All different formulations of Ca(OH)2-based medications tested release hydroxyl ion that can diffuse through the dentin.
Resumo:
The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics(R)) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.