959 resultados para differential observing response
Resumo:
Listeria monocytogenes is a prototypic bacterium for studying innate and adaptive cellular immunity as well as host defense. Using human monocyte-derived macrophages, we report that an infection with a wild-type strain, but not a listeriolysin O-deficient strain, of the Gram-positive bacterium L. monocytogenes induces expression of IFN-beta and a bioactive type I IFN response. Investigating the activation of signaling pathways in human macrophages after infection revealed that a wild-type strain and a hemolysin-deficient strain of L. monocytogenes activated the NF-kappaB pathway and induced a comparable TNF response. p38 MAPK and activating transcription factor 2 were phosphorylated following infection with either strain, and IFN-beta gene expression induced by wild-type L. monocytogenes was reduced when p38 was inhibited. However, neither IFN regulatory factor (IRF) 3 translocation to the nucleus nor posttranslational modifications and dimerizations were observed after L. monocytogenes infection. In contrast, vesicular stomatitis virus and LPS triggered IRF3 activation and signaling. When IRF3 was knocked down using small interfering RNA, a L. monocytogenes-induced IFN-beta response remained unaffected whereas a vesicular stomatitis virus-triggered response was reduced. Evidence against the possibility that IRF7 acts in place of IRF3 is provided. Thus, we show that wild-type L. monocytogenes induced an IFN-beta response in human macrophages and propose that this response involves p38 MAPK and activating transcription factor 2. Using various stimuli, we show that IRF3 is differentially activated during type I IFN responses in human macrophages.
Resumo:
OBJECTIVE: Outcome in osteochondral allografting is limited by the immunological incompatibility of the grafted tissue. Based on a resistance of chondrocytes to photodynamic therapy in cell culture it is proposed that 5-aminolevulinic acid-based photodynamic therapy (5-ALA-PDT) might be used to inactivate bone while maintaining viability of chondrocytes and thus immunomodulate bone selectively. METHODS: Chondrocytes and osteoblasts from porcine humeral heads were either isolated (cell culture) or treated in situ (tissue culture). To quantify cytotoxic effects of 5-ALA-PDT (0-20J/cm(2), 100mW/cm(2)) an (3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide) (MTT)-assay was used in cell culture and in situ hybridization in tissue culture to assess metabolic active cells (functional osteoblasts: colalpha(1)(I) mRNA, functional chondrocytes: colalpha(1)(II) mRNA). RESULTS: In cell culture, survival after 5-ALA-PDT was significantly higher for chondrocytes (5J/cm(2): 87+/-12% compared to untreated cells) than for osteoblasts (5J/cm(2): 12+/-11%). In tissue culture, the percentage of functional chondrocytes in cartilage showed a decrease after 5-ALA-PDT (direct fixation: 92+/-2%, 20J/cm(2): 35+/-15%; P<0.0001). A significant decrease in the percentage of bone surfaces covered by functional osteoblasts was observed in freshly harvested (31+/-3%) compared to untreated tissues maintained in culture (11+/-4%, P<0.0001), with no further decrease after 5-ALA-PDT. CONCLUSION: Chondrocytes were more resistant to 5-ALA-PDT than osteoblasts in cell culture, while in tissue culture a loss of functional chondrocytes was observed after 5-ALA-PDT. Since osteoblasts - but not chondrocytes - were sensitive to the tissue culture conditions, devitalized bone with functional cartilage might already be achieved by applying specific tissue culture conditions even without 5-ALA-PDT.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^
Resumo:
Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.
Resumo:
Grand fir (Abies grandis Lindl.) has been developed as a model system for the study of wound-induced oleoresinosis in conifers as a response to insect attack. Oleoresin is a roughly equal mixture of turpentine (85% monoterpenes [C10] and 15% sesquiterpenes [C15]) and rosin (diterpene [C20] resin acids) that acts to seal wounds and is toxic to both invading insects and their pathogenic fungal symbionts. The dynamic regulation of wound-induced oleoresin formation was studied over 29 d at the enzyme level by in vitro assay of the three classes of synthases directly responsible for the formation of monoterpenes, sesquiterpenes, and diterpenes from the corresponding C10, C15, and C20 prenyl diphosphate precursors, and at the gene level by RNA-blot hybridization using terpene synthase class-directed DNA probes. In overall appearance, the shapes of the time-course curves for all classes of synthase activities are similar, suggesting coordinate formation of all of the terpenoid types. However, closer inspection indicates that the monoterpene synthases arise earlier, as shown by an abbreviated time course over 6 to 48 h. RNA-blot analyses indicated that the genes for all three classes of enzymes are transcriptionally activated in response to wounding, with the monoterpene synthases up-regulated first (transcripts detectable 2 h after wounding), in agreement with the results of cell-free assays of monoterpene synthase activity, followed by the coordinately regulated sesquiterpene synthases and diterpene synthases (transcription beginning on d 3–4). The differential timing in the production of oleoresin components of this defense response is consistent with the immediate formation of monoterpenes to act as insect toxins and their later generation at solvent levels for the mobilization of resin acids responsible for wound sealing.
Resumo:
Coronatine is a phytotoxin produced by some plant-pathogenic bacteria. It has been shown that coronatine mimics the action of methyl jasmonate (MeJA) in plants. MeJA is a plant-signaling molecule involved in stress responses such as wounding and pathogen attack. In Arabidopsis thaliana, MeJA is essential for pollen grain development. The coi1 (for coronatine-insensitive) mutant of Arabidopsis, which is insensitive to coronatine and MeJA, produces sterile male flowers and shows an altered response to wounding. When the differential display technique was used, a message that was rapidly induced by coronatine in wild-type plants but not in coi1 was identified and the corresponding cDNA was cloned. The coronatine-induced gene ATHCOR1 (for A. thaliana coronatine-induced) is expressed in seedlings, mature leaves, flowers, and siliques but was not detected in roots. The expression of this gene was dramatically reduced in coi1 plants, indicating that COI1 affects its expression. ATHCOR1 was rapidly induced by MeJA and wounding in wild-type plants. The sequence of ATHCOR1 shows no strong homology to known proteins. However, the predicted polypeptide contains a conserved amino acid sequence present in several bacterial, animal, and plant hydrolases and includes a potential ATP/GTP-binding-site motif (P-loop).
Resumo:
Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.
Resumo:
Our motor and perceptual representations of actions seem to be intimately linked and the human mirror neuron system (MNS) has been proposed as the mediator. In two experiments, we presented biological or non-biological movement stimuli that were either congruent or incongruent to a required response prompted by a tone. When the tone occurred with the onset of the last movement in a series, i.e., it was perceived during the movement presentation, congruent biological stimuli resulted in faster reaction times than congruent non-biological stimuli. The opposite was observed for incongruent stimuli. When the tone was presented after visual movement stimulation, however, no such interaction was present. This implies that biological movement stimuli only affect motor behaviour during visual processing but not thereafter. These data suggest that the MNS is an “online” system; longstanding repetitive visual stimulation (Experiment 1) has no benefit in comparison to only one or two repetitions (Experiment 2).
Resumo:
Background: Increased impulsivity and aberrant response inhibition have been observed in bipolar disorder (BD). This study examined the functional abnormalities and underlying neural processes during response inhibition in BD, and its relationship to impulsivity. Methods: We assessed impulsivity using the Barratt Impulsiveness Scale (BIS) and, using functional magnetic resonance imaging (fMRI), measured neural activity in response to an Affective Go-NoGo Task, consisting of emotional facial stimuli (fear, happy, anger faces) and non-emotional control stimuli (neutral female and male faces) in euthymic BD (n=23) and healthy individuals (HI; n=25). Results: BD patients were significantly more impulsive, yet did not differ from HI on accuracy or reaction time on the emotional go/no-go task. Comparing neural patterns of activation when processing emotional Go versus emotional NoGo trials yielded increased activation in BD within temporal and cingulate cortices and within prefrontal-cortical regions in HI. Furthermore, higher BIS scores for BD were associated with slower reaction times, and indicative of compensatory cognitive strategies to counter increased impulsivity. Conclusions: These findings illustrate cognition-emotion interference in BD and the observed differences in neural activation indicate potentially altered emotion modulation. Increased activation in brain regions previously shown in emotion regulation and response inhibition tasks could represent a disease-specific marker for BD