158 resultados para dibenzoyl peroxides
Resumo:
The synthesis and study of the chemiluminescence parameters and thermal stability of 1,2-dioxetanes containing a spirofenchyl substituent are reported. Three fenchyl-substituted 1,2-dioxetanes were synthesized by photooxygenation of the corresponding alkenes, obtained by Barton-Kellogg olefination of the readily available (-)-fenchone. The fenchyl-substituted 1,2-dioxetanes showed thermal stabilities similar to those of the corresponding spiroadamantyl-substituted derivatives, although being slightly more labile with respect to unimolecular decomposition than the latter derivatives, which are widely utilized as labels in a great variety of chemiluminescent immunoassays. Fluoride induced decomposition of one triggerable fenchyl 1,2-dioxetane derivative showed kinetic parameters similar to those of the corresponding adamantyl-substituted derivative. The chemiluminescence quantum yields in the one percent range are also similar to that of other widely utilized chemiluminescence systems as the luminol reaction. These results indicate that fenchyl-substituted 1,2-dioxetanes can potentially be utilized as a cheaper alternative to substitute the corresponding spiroadamantyl derivatives in bioanalytical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Investigation of the bioactive crude extract from the sponge Plakortis angulospiculatus from Brazil led to the isolation of plakortenone (1) as a new polyketide, along with five known polyketides (2-6) previously isolated from other Plakortis sponges. The known polyketides were tested in antileishmanial, antitrypanosomal, antineuroinflammatory, and cytotoxicity assays. The results show that plakortide P (3) is a potent antiparasitic compound, against both Leishmania chagasi and Trypanosona cruzi, and exhibited antineuroinflammatory activity. The known polyketides 2-6 were tested for cytotoxicity against four human cancer cell lines, but displayed only moderate cytotoxic activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conduziu-se este trabalho, com o objetivo de avaliar a atividade antioxidante de diferentes extratos de cogumelo Agaricus blazei, bem como a estabilidade oxidativa do óleo de soja adicionado de extrato de cogumelo. O cogumelo seco em estufa a 55ºC e triturado (10 g) fui submetido à extração, à temperatura ambiente, com 100 mL de metanol e metanol:água (1:1) com duração de 6 e 12 horas para ambas as extrações. O extrato de maior atividade antioxidante, conforme o método DPPH, foi aplicado em óleo de soja na concentração de 0,1% de compostos fenólicos totais e, então, submetido ao método do Rancimat e ao teste acelerado em estufa a 60ºC por um período de 16 dias. Amostras de óleo foram retiradas da estufa cada 4 dias e analisadas quanto ao índice de peróxidos e dienos conjugados. Como parâmetros de comparação, foram utilizados os antioxidantes sintéticos BHT (100 mg/kg), TBHQ (50 mg/kg) e o óleo de soja isento de antioxidantes (controle). Os resultados demonstraram que o extrato metanólico:aquoso, com 6 horas de extração, apresentou maior atividade antioxidante. A aplicação desse extrato em óleo de soja proporcionou a seguinte ordem em relação à estabilidade oxidativa: TBHQ > extrato de cogumelo > BHT = óleo de soja (controle). O extrato de cogumelo também foi eficiente em relação à formação de peróxidos e dienos conjugados que, apesar de aumentarem ao longo do tempo, foi menor que o BHT, porém maior que o TBHQ. O extrato de cogumelo apresentou-se efetivo na proteção do óleo, podendo ser considerado um potencial antioxidante natural.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Rare earth (RE) ions have spectroscopic characteristics to emit light in narrow lines, which makes RE complexes with organic ligands candidates for full color OLED (Organic Light Emitting Diode) applications. In particular, beta-diketone rare earth (RE(3+)) complexes show high fluorescence emission efficiency due to the high absorption coefficient of the beta-diketone and energy transfer to the central ion. In this work, the fabrication and the electroluminescent properties of devices containing a double and triple-layer OLED using a new beta-diketone complex, [Eu(bmdm)(3)(tppo)(2)], as transporting and emitting layers are compared and discussed. The double and triple-layer devices based on this complex present the following configurations respectively: device 1: ITO/TPD (40 nm)/[Eu(bmdm)(3)(tppo)(2)] (40 nm)/Al (150 nm); device 2: ITO/TPD (40 nm)/[Eu(bmdm)(3) (tppo)(2)] (40 nm)/Alq(3) (20 nm)/Al (150 nm) and device 3: ITO/TPD (40 nm)/bmdm-ligand (40 nm)/Al (150 nm), were TPD is (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenil-4,4-diamine) and bmdm is butyl methoxy-dibenzoyl-methane. All the films were deposited by thermal evaporation carried out in a high vacuum system. These devices exhibit high intensity photo- (PL) and electro-luminescent (EL) emission. Electroluminescence spectra show emission from Eu(3+) ions attributed to the (5)D(0) to (7)F(J) (J = 0, 1, 2, 3 and 4) transitions with the hypersensitive (5)D(o) -> (7)F(2) transition (around 612 nm) as the most prominent one. Moreover, a transition from (5)D(1) to (7)F(1) is also observed around 538 nm. The OLED light emission was almost linear with the current density. The EL CIE chromaticity coordinates (X = 0.66 and Y = 0.33) show the dominant wavelength, lambda(d) = 609 nm, and the color gamut achieved by this device is 0.99 in the CIE color space. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work a new europium (III) complex with the following formula NH(4) [Eu(bmdm)(4)] was synthesized and characterized. The bmdm (butyl methoxy-dibenzoyl-methane) is a P-diketone molecule used as UV radiation absorber in sunscreen formulations. Coordination of this ligand to the Eu(3+) ion was confinned by FT-IR, while the Raman spectrum suggests the presence of NH(4)(+) ions. The photoluminescence spectra present narrow lines arising from f-f intra-configurational transitions (5)D(0-)(7)F(0,1,2,3,4), dominated by the hypersensitive (5)D(0)-(7)F(2) transition. In the spectrum recorded at 77 K, all transitions split into 2J + 1 lines suggesting that there is just one symmetry site around Eu(3+) ion. This symmetry is not centrosymmetric. The calculated intensity parameters are ohm(2) = 30.5 x 10(-20) cm(2) and ohm(4) = 5.91 x 10(-20) cm(2) for this complex. The CIE chromaticity coordinates (x = 0.67 and y = 0.32) show a dominant wavelength of 615 nm. The color gamut achieved by this complex is a 100% in the CIE color space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Several studies have shown a reduction in enamel bond strengths when the bonding procedure is carried out immediately after vital bleaching with peroxides. This reduction in bond strengths has become a concern in cosmetic dentistry with the introduction of new in-office and waiting-room bleaching techniques. The aim of this in vitro study was to evaluate the effect of three bleaching regimens: 35% hydrogen peroxide (HP), 35% carbamide peroxide (CP), and 10% CP, on dentin bond strengths. Materials and Methods: One hundred and twenty fresh bovine incisors were used in this study. The labial surface of each tooth was ground flat to expose dentin and was subsequently polished with 600-grit wet silicon carbide paper. The remaining dentin thickness was monitored and kept at an average of 2 mm. The teeth were randomly assigned to four bleaching regimens (n = 30): (A) control, no bleaching treatment; (B) 35% HP for 30 minutes; (C) 35% CP for 30 minutes; and (D) 10% CP for 6 hours. For each group, half of the specimens (n = 15) were bonded with Single Bond/Z100 immediately after the bleaching treatment, whereas the other half was bonded after the specimens were stored for 1 week in artificial saliva at 37°C. The specimens were fractured in shear using an Instron machine. Results: For the groups bonded immediately after bleaching, one-way analysis of variance (ANOVA) followed by the Duncan's post hoc test revealed a statistically significant reduction in bond strengths in a range from 71% to 76%. For the groups bonded at 1 week, one-way ANOVA showed that group B (35% HP for 30 min) resulted in the highest bond strengths, whereas 10% CP resulted in the lowest bond strengths. Student's t-test showed that delayed bonding resulted in a significant increase in bond strengths for groups B (35% HP) and C (35% CP); whereas the group bleached with 10% CP (group D) remained in the same range obtained for immediate bonding. Storage in artificial saliva also affected the control group, reducing its bond strengths to 53% of the original. ©2000 BC Decker Inc.
Resumo:
The objective of this in vitro study was to quantitatively assess the effects of bleaching with 10 and 15% carbamide peroxide (CP) on restoration materials by performing superficial microhardness analysis. Acrylic cylindrical containers (4 x 2 mm) were filled with the following restoration products: Charisma (Heraues Kulzer, Vila Santa Catarina, São Paulo, Brazil), Durafill VS (Heraeus Kulzer), Vitremer (3M, Sumaré, São Paulo, Brazil), Dyract (Dentsply, Petrópolis, Rio de Janeiro, Brazil), and Permite C (SDI, São Pauio, São Paulo, Brazil). Sixty samples were prepared of each restoration material. Twenty samples received bleaching treatment with 10% CP, 20 samples received bleaching treatment with 15% CP, and 20 samples were kept submerged in artificial saliva, which was replaced daily. The treatment consisted of immersion of the specimens in 1 cm3 of CP at 10 and 15% for 6 hours per day during 3 weeks, whereupon the test specimens were washed, dried, and kept immersed in artificial saliva for 18 hours. Then the test and control specimens were analyzed using a microhardness gauge. The Knoop Hardness Number (KHN) was taken for each test and control specimen at five different locations by applying a 25 g force for 20 seconds. The values obtained were transformed into KHNs and the mean was calculated. The data were submitted to statistical analysis by analysis of variance and Tukey test, p < .05. The means/standard deviations were as follows: Charisma: CP 10% 38.52/4.08, CP 15% 34.31/6.13, saliva 37.36/4.48; Durafill VS: CP 10% 18.65/1.65, CP 15% 19.38/2.23, saliva 18.27/1.43; Dyract AP: CP 10% 30.26/2.81, CP 15% 28.64/5.44, saliva 33.88/3.46; Vitremer: CP 10% 28.15/3.04, CP 15% 17.40/3.11, saliva 40.93/4.18; and Permite C: CP 10% 183.50/27.09, CP 15% 159.45/5.78, saliva 215.80/26.15. A decrease in microhardness was observed for the materials Dyract AP, Vitremer, and Permite C after treatment with CP at 10 and 15%, whereas no effect on either of the two composites (Charisma and Durafill) was verified. CLINICAL SIGNIFICANCE: The application of the carbamide peroxide gels at 10 and 15% did not alter the microhardness of the composite resins Charisma and Durafill. In situ and clinical studies are necessary to enable one to conclude that the reduction in microhardness of the materials effectively results in clinical harm to the restorations.
Resumo:
Aim: To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures. Methodology: Bovine lateral incisors were sectioned 3 mm apical to the cemento-enamel junction and the coronal pulpal tissue was removed. Teeth were divided into six groups (n = 10): G1, G2 and G3 were not submitted to any restorative procedure, while G4, G5 and G6 were submitted to Class V preparations and restored with composite resin. Acetate buffer was placed in the pulp chamber and treatment agents were applied for 60 min at 37°C as follows: G1 and G4, immersion into distilled water; G2 and G5, 10% carbamide peroxide (CP) exposure; G3 and G6, 35% CP bleaching. The buffer solution was removed and transferred to a glass tube where leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined spectrophotometrically at 596 nm. A standard curve made with known amounts of hydrogen peroxide was used to convert the optical density values of the coloured samples into microgram equivalents of hydrogen peroxide. Data were submitted to ANOVA and Tukey's test (5%). Results: Amounts of hydrogen peroxide found in the pulp chamber of G2 and G5 specimens (0.1833 ± 0.2003 μg) were significantly lower (P = 0.001) when compared to G3 and G6 specimens (0.4604 ± 0.3981 μg). Restored teeth held significantly higher (P = 0.001) hydrogen peroxide concentrations in the pulp chamber than intact teeth. Conclusion: Higher concentrations of the bleaching agent produced higher levels of hydrogen peroxide in the pulp chamber, especially in restored teeth.