997 resultados para dentine bonding agents
Resumo:
Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.
Resumo:
The aim of this study was to evaluate the effects of dentin surface treatments on the tensile bond strength (TBS) of the self-etching primer Clearfil SE Bond (CSE) and the one-step self-etching One-Up Bond F (OUB). The exposed flat dentin surfaces of twenty-four sound third molars were prepared with diamond bur at high-speed, carbide bur at low-speed or wet ground with #600 grit SiC paper. The adhesive systems were applied to the dentin surfaces and light-cured according to the manufacturers' instructions. A 6-mm high composite crown was incrementally built-up and each increment was light-cured for 40 seconds. After being stored in water (37°C/24 h), the samples were serially sectioned parallel to the long axis, forming beams (n = 20) with a cross-sectional area of approximately 0.8 mm 2. The specimens were tested in a Universal Testing Machine at 0.5 mm/min. The cross-sectional area was measured and the results (MPa) were analyzed by two-way ANOVA and Tukey Test (p < 0.05). Overall, the groups treated with CSE exhibited the highest TBS for all surface treatments. Dentin surfaces prepared with carbide bur at low speed reduced TBS in the CSE group; however, OUB was not affected by surface treatments. The effect of surface abrasive methods on TBS was material-dependent.
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.
Resumo:
The purpose of this study was to evaluate in vitro three adhesive systems: a total etching single-component system (G1 Prime & Bond 2.1), a self-etching primer (G2 Clearfil SE Bond), and a self-etching adhesive (G3 One Up Bond F), through shear bond strength to enamel of human teeth, evaluating the type of fracture through stereomicroscopy, following the ISO guidance on adhesive testing. Thirty sound premolars were bisected mesiodistally and the buccal and lingual surfaces were embedded in acrylic resin, polished up to 600-grit sandpapers, and randomly assigned to three experimental groups (n = 20). Composite resin cylinders were added to the tested surfaces. The specimens were kept in distilled water (37°C/24 h), thermocycled for 500 cycles (5°C-55°C) and submitted to shear testing at a crosshead speed of 0.5 mm/min. The type of fracture was analyzed under stereomicroscopy and the data were submitted to Anova, Tukey and Chi-squared (5%) statistical analyses. The mean adhesive strengths were G1: 18.13 ± 6.49 MPa, (55% of resin cohesive fractures); G2: 17.12 ± 5.80 MPa (90% of adhesive fractures); and G3: 10.47 ± 3.14 MPa (85% of adhesive fractures). In terms of bond strength, there were no significant differences between G1 and G2, and G3 was significantly different from the other groups. G1 presented a different type of fracture from that of G2 and G3. In conclusion, although the total etching and self-etching systems presented similar shear bond strength values, the types of fracture presented by them were different, which can have clinical implications.
Resumo:
The use of acid etchants to produce surface demineralization and collagen network exposure, allowing adhesive monomers interdiffusion and consequently the formation of a hybrid layer, has been considered the most efficient mechanism of dentin bonding. The aim of this study was to compare the tensile bond strength to dentin of three adhesive systems, two self-etching ones (Clearfil SE Bond - CSEB and One Up Bond F - OUBF) and one total-etching one (Single Bond - SB), under three dentinal substrate conditions (wet, dry and re-wet). Ninety human, freshly extracted third molars were sectioned at the occlusal surface to remove enamel and to form a flat dentin wall. The specimens were restored with composite resin (Filtek Z250) and submitted to tensile bond strength testing (TBS) in an MTS 810. The data were submitted to two-way ANOVA and Tukey's test (p = 0.05). Wet dentin presented the highest TBS values for SB and CSEB. Dry dentin and re-wet produced significantly lower TBS values when using SB. OUBF was not affected by the different conditions of the dentin substrate, producing similar TBS values regardless of the surface pretreatments.
Resumo:
Host-derived proteases have been reported to degrade the collagen matrix of incompletely-resin-infiltrated dentin. This study tested the hypothesis that interfacial degradation of resin-dentin bonds may be prevented or delayed by the application of chlorhexidine (CHX), a matrix metalloproteinase inhibitor, to dentin after phosphoric acid-etching. Contralateral pairs of resin-bonded Class I restorations in non-carious third molars were kept under intra-oral function for 14 months. Preservation of resin-dentin bonds was assessed by microtensile bond strength tests and TEM examination. In vivo bond strength remained stable in the CHX-treated specimens, while bond strength decreased significantly in control teeth. Resin-infiltrated dentin in CHX-treated specimens exhibited normal structural integrity of the collagen network. Conversely, progressive disintegration of the fibrillar network was identified in control specimens. Auto-degradation of collagen matrices can occur in resin-infiltrated dentin, but may be prevented by the application of a synthetic protease inhibitor, such as chlorhexidine.
Resumo:
Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations. Materials and Methods: Forty-two blocks (6 × 6 × 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-l̀m Al2O3 particles, silanization; Gr3 - chairside tribochemical silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37°C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (μTBS). For statistical analysis (one-way ANOVA and Tukey's test, · = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7). Results: μTBS values (MPa) of Gr2 (62.0 ± 3.9a) and Gr3 (60.5 ± 7.9a) were statistically similar to each other and higher than Gr1 (38.2 ± 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone. Conclusion: Conditioning methods with 50-l̀m Al2O3 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.
Resumo:
Purpose: To evaluate the influence of the brush type as a earner of priming adhesive solutions and the use of paper points as a remover of the excess of these solutions on the push-out bond strength of resin cement to bovine root dentin. The null hypotheses were that brush type and the use of paper points do not affect the bond strength. Materials and Methods: The canals of 80 single-root bovine roots (16 mm in length) were prepared at 12 mm using the preparation drill (FRC Postec Plus, Ivoclar). Half of each root was embedded in acrylic resin and the specimens were divided into 8 groups, considering the factors brush type (4 levels) and paper point (2 levels) (n = 10): Gr 1: small microbrush (Cavi-Tip, SDI); Gr 2: Microbrush (Dentsply); Gr 3: Endobrush (Bisco); Gr 4: conventional brush (Bisco); Gr 5: Cavi-Tip (SDI) + paper points; Gr 6: Microbrush (Dentsply) + paper points; Gr 7: Endobrush (Bisco) + paper points; Gr 8: conventional brush (Bisco) + paper points. The root dentin was treated with a multistep total-etch adhesive system (All Bond 2). The adhesive system was applied using each microbrush, with and without using paper points. One fiber post was molded with addition silicon and 80 posts were made of resin cement (Duolink), The resin posts were luted (Duolink resin cement), and the specimens were stored for 24 h in water at 37°C. Each specimen was cut into 4 disk-shaped samples (1.8 mm in thickness), which were submitted to the push-out test. Results: The brush type (p < 0.0001) (small microbrush > microbrush = endobrush = conventional brush) and the use of paper points (p = 0.0001) (with > without) influenced the bond strength significantly (two-way ANOVA). The null hypotheses were rejected. Conclusion: The smallest brush (Cavi-Tip) and the use of paper points significantly improved the resin bond to bovine root dentin.
Resumo:
Purpose: The purpose of this study was to verify the influence of surface sealants and dentin adhesive systems on the microleakage of composite restorations. Methods: Class V cavities were made on the buccal faces of 100 permanent third molars and restored with Z250. After 24 hours, they were submitted to polishing and finishing processes. The teeth were divided into groups according to the sealant agent: group 1 - Single Bond; group 2 - Opti Bond Solo Plus; group 3 - Fortify; group 4 - Fortify Plus; and group 5 - control without sealant. The analysis of immediate microleakage was performed in 10 restorations from each group, soon after the sealing. The other 10 specimens from each group were submitted to tooth-brushing and thermal cycles. The teeth were isolated and immersed in 2% methylene blue solution, washed in tap water, and sectioned in the buccolingual direction. The percentage of marginal leakage was calculated using an image analysis program, and results were submitted to analysis of variance and Tukey's test. Results: All the sealed groups demonstrated lower microleakage values compared to the control group. Group 3, sealed with Fortify, presented the lowest mean microleakage values. Conclusion: The application of surface sealants effectively decreased the microleakage in composite resin restorations.
Resumo:
PURPOSE: To investigate the penetration (tags) of adhesive materials into enamel etched with phosphoric acid or treated with a self-etching adhesive, before application of a pit-and-fissure sealant. MATERIALS AND METHODS: The sample comprised six study groups with six specimens each. Before pit-and-fissure sealing with the materials Clinpro SealantTM (Groups I and II), Vitro Seal ALPHA (Groups III and IV) and Fuji II LC (Groups V and VI), the teeth in Groups I, III, and V were etched with 35% phosphoric acid for 30 seconds. Teeth in Groups II, IV, and VI received application of the self-etching adhesive Adper Prompt L-Pop. The treated teeth were sectioned buccolingually, ground to 100-microm thickness, decalcified, and analyzed by conventional light microscopy at 400x magnification. RESULTS: The teeth etched with phosphoric acid exhibited significantly greater penetration than specimens treated with self-etching adhesive. CLINICAL SIGNIFICANCE: When compared with enamel treated with a self-etching adhesive, the penetration (tags) of adhesive materials into enamel was greater when applied on enamel etched with phosphoric acid.
Resumo:
Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8), the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA) or Cavit (3M ESPE, St. Paul, MN, USA) and kept in an oven at 37°C for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA) or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan) were applied in accordance with the manufacturers' recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were submitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05). Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA), bond strength did not differ statistically (p>0.05) for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan), only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA) Group showed significantly lower bond strength (30.1 ± 13.8 MPa) in comparison with the other groups; control (38.9 ± 13.5 MPa) and Cavit (3M ESPE, St. Paul, MN, USA) (42.1 ± 11.0 MPa), which showed no significant difference between them. Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.
Resumo:
Aim : To compare the push-out strength of bovine- and human-root dentin and, thus, evaluate the suitability of bovine-root dentin to substitute human-root dentin for bond strength testing. Materials and Methods : Ten single-rooted human-teeth and ten bovine incisors were prepared using a #3 bur of a fiber post system (12 mm long). The posts were duplicated with resin cement (Duolink). The root canals were treated with All Bond 2 adhesive system and the resin posts were cemented using Duolink. The specimens were cut perpendicular to their long axis, yielding disc-specimens with 1.5 mm thickness, which were submitted to a push-out test (1 mm/min). Ten bond strength values per group (n = 10) were used for statistical analysis (Student t test, a =.05). Results : Statistically significant differences were found for the bond strength values between bovine- (4.1 1.3 MPa) and human-root dentin (8.6 5.7 MPa) (P =.0001). Conclusion : The push-out strengths of bovine- and human-root dentin were statistically different.
Resumo:
This study evaluated bond strength to dentin as a result of storage time for conventional adhesive systems (with or without collagen) that had been deproteinized with 10% sodium hypochlorite (NaOCl). For this study, 72 human molars were sectioned in a mesiodistal axial plane and embedded in acrylic resin; at that point, the vestibular and lingual surfaces were worn down with abrasive paper. Acid etching was performed for 15 seconds (using 37% phosphoric acid) and the specimens were divided into 12 groups (n = 6), depending on the adhesive system used, the dentin treatment performed, and the length of evaluation (24 hours or six months). A resin composite was inserted over the prepared area with the aid of a metal matrix. Following a mechanical shear test, fractured surfaces were analyzed by stereomicroscope and the data were submitted to ANOVA and Tukey's test. It was concluded that the dentin deproteinization treatment with 10% NaOCI improved the bond strength in five of the six groups. The bond strength after 24 hours was significantly higher than the bond strength measured after six months. Of the three adhesive systems tested in this study, DenTASTIC UNO demonstrated the lowest bond strength.
Resumo:
This study subjected two self-adhesive resin cements and two conventional resin cements to dry and aging conditions, to compare their microtensile bond strengths (MTBS) to dentin. Using four different luting systems (n = 10), 40 composite resin blocks (each 5x5x4 mm) were cemented to flat human crown dentin surfaces. The specimens were stored in water for 24 hours (37°C), at which point each specimen was sectioned along two axes to obtain beams that were divided randomly into two groups: dry samples, which were tested immediately, and samples that were subjected to accelerated aging conditions (12, 000 thermocycles followed by storage for 150 days). The μTBS results were affected significantly by the luting system used (P < 40001). Only the μTBS of Rely-X Unicem was reduced significantly after aging; the μTBS remained stable or increased for the other self-adhesive resin cement and the two conventional cements.