992 resultados para demand variations
Resumo:
Background There are minimal reports of seasonal variations in chronic heart failure (CHF)-related morbidity and mortality beyond the northern hemisphere. Aims and methods We examined potential seasonal variations with respect to morbidity and all-cause mortality over more than a decade in a cohort of 2961 patients with CHF from a tertiary referral hospital in South Australia subject to mild winters and hot summers. Results Seasonal variation across all event-types was observed. CHF-related morbidity peaked in winter (July) and was lowest in summer (February): 70 (95% CI: 65 to 76) vs. 33 (95% CI: 30 to 37) admissions/1000 at risk (p<0.005). All-cause admissions (113 (95% CI: 107 to 120) vs. 73 (95% CI 68 to 79) admissions/1000 at risk, p<0.001) and concurrent respiratory disease (21% vs. 12%,p<0.001) were consistently higher in winter. 2010 patients died, mortality was highest in August relative to February: 23 (95% CI: 20 to 27) vs. 12 (95% CI: 10 to 15) deaths per 1000 at risk, p<0.001. Those aged 75 years or older were most at risk of seasonal variations in morbidity and mortality. Conclusion Seasonal variations in CHF-related morbidity and mortality occur in the hot climate of South Australia, suggesting that relative (rather than absolute) changes in temperature drive this global phenomenon.
Resumo:
In this paper, we describe, in detail, a design method that assures that the designed product satisfies a set of prescribed demands while, at the same time, providing a concise representation of the design that facilitates communication in multidisciplinary design teams. This Demand Compliant Design (DeCoDe) method was in itself designed to comply with a set of demands. The demands on the method were determined by an analysis of some of the most widely used design methods and from the needs arising in the practice of design for quality. We show several modes of use of the DeCoDe method and illustrate with examples.
Resumo:
Driving is a vigilance task, requiring sustained attention to maintain performance and avoid crashes. Hypovigilance (i.e., marked reduction in vigilance) while driving manifests as poor driving performance and is commonly attributed to fatigue (Dinges, 1995). However, poor driving performance has been found to be more frequent when driving in monotonous road environments, suggesting that monotony plays a role in generating hypovigilance (Thiffault & Bergeron, 2003b). Research to date has tended to conceptualise monotony as a uni-dimensional task characteristic, typically used over a prolonged period of time to facilitate other factors under investigation, most notably fatigue. However, more often than not, more than one exogenous factor relating to the task or operating environment is manipulated to vary or generate monotony (Mascord & Heath, 1992). Here we aimed to explore whether monotony is a multi-dimensional construct that is determined by characteristics of both the task proper and the task environment. The general assumption that monotony is a task characteristic used solely to elicit hypovigilance or poor performance related to fatigue appears to have led to there being little rigorous investigation into the exact nature of the relationship. While the two concepts are undoubtedly linked, the independent effect of monotony on hypovigilance remains largely ignored. Notwithstanding, there is evidence that monotony effects can emerge very early in vigilance tasks and are not necessarily accompanied by fatigue (see Meuter, Rakotonirainy, Johns, & Wagner, 2005). This phenomenon raises a largely untested, empirical question explored in two studies: Can hypovigilance emerge as a consequence of task and/or environmental monotony, independent of time on task and fatigue? In Study 1, using a short computerised vigilance task requiring responses to be withheld to infrequent targets, we explored the differential impacts of stimuli and task demand manipulations on the development of a monotonous context and the associated effects on vigilance performance (as indexed by respone errors and response times), independent of fatigue and time on task. The role of individual differences (sensation seeking, extroversion and cognitive failures) in moderating monotony effects was also considered. The results indicate that monotony affects sustained attention, with hypovigilance and associated performance worse in monotonous than in non-monotonous contexts. Critically, performance decrements emerged early in the task (within 4.3 minutes) and remained consistent over the course of the experiment (21.5 minutes), suggesting that monotony effects can operate independent of time on task and fatigue. A combination of low task demands and low stimulus variability form a monotonous context characterised by hypovigilance and poor task performance. Variations to task demand and stimulus variability were also found to independently affect performance, suggesting that monotony is a multi-dimensional construct relating to both task monotony (associated with the task itself) and environmental monotony (related to characteristics of the stimulus). Consequently, it can be concluded that monotony is multi-dimensional and is characterised by low variability in stimuli and/or task demands. The proposition that individual differences emerge under conditions of varying monotony with high sensation seekers and/or extroverts performing worse in monotonous contexts was only partially supported. Using a driving simulator, the findings of Study 1 were extended to a driving context to identify the behavioural and psychophysiological indices of monotony-related hypovigilance associated with variations to road design and road side scenery (Study 2). Supporting the proposition that monotony is a multi-dimensional construct, road design variability emerged as a key moderating characteristic of environmental monotony, resulting in poor driving performance indexed by decrements in steering wheel measures (mean lateral position). Sensation seeking also emerged as a moderating factor, where participants high in sensation seeking tendencies displayed worse driving behaviour in monotonous conditions. Importantly, impaired driving performance was observed within 8 minutes of commencing the driving task characterised by environmental monotony (low variability in road design) and was not accompanied by a decline in psychophysiological arousal. In addition, no subjective declines in alertness were reported. With fatigue effects associated with prolonged driving (van der Hulst, Meijman, & Rothengatter, 2001) and indexed by drowsiness, this pattern of results indicates that monotony can affect driver vigilance, independent of time on task and fatigue. Perceptual load theory (Lavie, 1995, 2005) and mindlessness theory (Robertson, Manly, Andrade, Baddley, & Yiend, 1997) provide useful theoretical frameworks for explaining and predicting monotony effects by positing that the low load (of task and/or stimuli) associated with a monotonous task results in spare attentional capacity which spills over involuntarily, resulting in the processing of task-irrelevant stimuli or task unrelated thoughts. That is, individuals – even when not fatigued - become easily distracted when performing a highly monotonous task, resulting in hypovigilance and impaired performance. The implications for road safety, including the likely effectiveness of fatigue countermeasures to mitigate monotony-related driver hypovigilance are discussed.
Resumo:
Emergency Health Services (EHS), encompassing hospital-based Emergency Departments (ED) and pre-hospital ambulance services, are a significant and high profile component of Australia’s health care system and congestion of these, evidenced by physical overcrowding and prolonged waiting times, is causing considerable community and professional concern. This concern relates not only to Australia’s capacity to manage daily health emergencies but also the ability to respond to major incidents and disasters. EHS congestion is a result of the combined effects of increased demand for emergency care, increased complexity of acute health care, and blocked access to ongoing care (e.g. inpatient beds). Despite this conceptual understanding there is a lack of robust evidence to explain the factors driving increased demand, or how demand contributes to congestion, and therefore public policy responses have relied upon limited or unsound information. The Emergency Health Services Queensland (EHSQ) research program proposes to determine the factors influencing the growing demand for emergency health care and to establish options for alternative service provision that may safely meet patient’s needs. The EHSQ study is funded by the Australian Research Council (ARC) through its Linkage Program and is supported financially by the Queensland Ambulance Service (QAS). This monograph is part of a suite of publications based on the research findings that examines the existing literature, and current operational context. Literature was sourced using standard search approaches and a range of databases as well as a selection of articles cited in the reviewed literature. Public sources including the Australian Institute of Health and Welfare (AIHW), the Council of Ambulance Authorities (CAA) Annual Reports, Australian Bureau of Statistics (ABS) and Department of Health and Ageing (DoHA) were examined for trend data across Australia.
Resumo:
This chapter argues that evolutionary economics should be founded upon complex systems theory rather than neo-Darwinian analogies concerning natural selection, which focus on supply side considerations and competition amongst firms and technologies. It suggests that conceptions such as production and consumption functions should be replaced by network representations, in which the preferences or, more correctly, the aspirations of consumers are fundamental and, as such, the primary drivers of economic growth. Technological innovation is viewed as a process that is intermediate between these aspirational networks, and the organizational networks in which goods and services are produced. Consumer knowledge becomes at least as important as producer knowledge in determining how economic value is generated. It becomes clear that the stability afforded by connective systems of rules is essential for economic flexibility to exist, but that too many rules result in inert and structurally unstable states. In contrast, too few rules result in a more stable state, but at a low level of ordered complexity. Economic evolution from this perspective is explored using random and scale free network representations of complex systems.
Resumo:
Objective: Hospital EDs are a significant and high-profile component of Australia’s health-care system, which in recent years have experienced considerable crowding. This crowding is caused by the combination of increasing demand, throughput and output factors. The aim of the present article is to clarify trends in the use of public ED services across Australia with a view to providing an evidence basis for future policy analysis and discussion. Methods: The data for the present article have been extracted, compiled and analysed from publicly available sources for a 10 year period between 2000–2001 and 2009–2010. Results: Demand for public ED care increased by 37% over the decade, an average annual increase of 1.8% in the utilization rate per 1000 persons. There were significant differences in utilization rates and in trends in growth among states and territories that do not easily relate to general population trends alone. Conclusions: This growth in demand exceeds general population growth, and the variability between states both in utilization rates and overall trends defies immediate explanation. The growth in demand for ED services is a partial contributor to the crowding being experienced in EDs across Australia. There is a need for more detailed study, including qualitative analysis of patient motivations in order to identify the factors driving this growth in demand.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
BACKGROUND: Emergency departments (EDs) are critical to the management of acute illness and injury, and the provision of health system access. However, EDs have become increasingly congested due to increased demand, increased complexity of care and blocked access to ongoing care (access block). Congestion has clinical and organisational implications. This paper aims to describe the factors that appear to infl uence demand for ED services, and their interrelationships as the basis for further research into the role of private hospital EDs. DATA SOURCES: Multiple databases (PubMed, ProQuest, Academic Search Elite and Science Direct) and relevant journals were searched using terms related to EDs and emergency health needs. Literature pertaining to emergency department utilisation worldwide was identified, and articles selected for further examination on the basis of their relevance and significance to ED demand. RESULTS: Factors influencing ED demand can be categorized into those describing the health needs of the patients, those predisposing a patient to seeking help, and those relating to policy factors such as provision of services and insurance status. This paper describes the factors influencing ED presentations, and proposes a novel conceptual map of their interrelationship. CONCLUSION: This review has explored the factors contributing to the growing demand for ED care, the influence these factors have on ED demand, and their interrelationships depicted in the conceptual model.
Resumo:
Depleting fossil fuel resources and increased accumulation of greenhouse gas emissions are increasingly making electrical vehicles (EV) attractive option for the transportation sector. However uncontrolled random charging and discharging of EVs may aggravate the problems of an already stressed system during the peak demand and cause voltage problems during low demand. This paper develops a demand side response scheme for properly integrating EVs in the Electrical Network. The scheme enacted upon information on electricity market conditions regularly released by the Australian Energy Market Operator (AEMO) on the internet. The scheme adopts Internet relays and solid state switches to cycle charging and discharging of EVs. Due to the pending time-of-use and real-price programs, financial benefits will represent driving incentives to consumers to implement the scheme. A wide-scale dissemination of the scheme is expected to mitigate excessive peaks on the electrical network with all associated technical, economic and social benefits.
Resumo:
The design-build (DB) system has been demonstrated as an effective delivery method and has gained popularity worldwide. However it is observed that a number of operational variations of DB system have emerged since the last decade to cater for different client’s requirements. After the client decides to procure his project through the DB system, he still has to choose an appropriate configuration to deliver their projects optimally. However, there is little research on the selection of DB operational variations. One of the main reasons for this is the lack of evaluation criteria for determining the appropriateness of each operational variation. To obtain such criteria, a three-round Delphi survey has been conducted with 20 construction experts in the People’s Republic of China (PRC). Seven top selection criteria were identified. These are: (1) availability of competent design-builders; (2) client’s capabilities; (3) project complexity; (4) client’s control of project; (5) early commencement & short duration; (6) reduced responsibility or involvement; and (7) clearly defined end user’s requirements. These selection criteria were found to have a statistically significant agreement. These findings may furnish various stakeholders, DB clients in particular, with better insight to understand and compare the different operational variations of the DB system.
Resumo:
Many academic researchers have conducted studies on the selection of design-build (DB) delivery method; however, there are few studies on the selection of DB operational variations, which poses challenges to many clients. The selection of DB operational variation is a multi-criteria decision making process that requires clients to objectively evaluate the performance of each DB operational variation with reference to the selection criteria. This evaluation process is often characterized by subjectivity and uncertainty. In order to resolve this deficiency, the current investigation aimed to establish a fuzzy multicriteria decision-making (FMCDM) model for selecting the most suitable DB operational variation. A three-round Delphi questionnaire survey was conducted to identify the selection criteria and their relative importance. A fuzzy set theory approach, namely the modified horizontal approach with the bisector error method, was applied to establish the fuzzy membership functions, which enables clients to perform quantitative calculations on the performance of each DB operational variation. The FMCDM was developed using the weighted mean method to aggregate the overall performance of DB operational variations with regard to the selection criteria. The proposed FMCDM model enables clients to perform quantitative calculations in a fuzzy decision-making environment and provides a useful tool to cope with different project attributes.
Resumo:
Successful identification and exploitation of opportunities has been an area of interest to many entrepreneurship researchers. Since Shane and Venkataraman’s seminal work (e.g. Shane and Venkataraman, 2000; Shane, 2000), several scholars have theorised on how firms identify, nurture and develop opportunities. The majority of this literature has been devoted to understanding how entrepreneurs search for new applications of their technological base or discover opportunities based on prior knowledge (Zahra, 2008; Sarasvathy et al., 2003). In particular, knowledge about potential customer needs and problems that may present opportunities is vital (Webb et al., 2010). Whereas the role of prior knowledge of customer problems (Shane, 2003; Shepherd and DeTienne, 2005) and positioning oneself in a so-called knowledge corridor (Fiet, 1996) has been researched, the role of opportunity characteristics and their interaction with customer-related mechanisms that facilitate and hinder opportunity identification has received scant attention.
Resumo:
A female voice softly recites physical and psychological associations of aura colours. On screen, individual words fade in and out rhythmically amid a field of swirling and morphing colours. The animated words correlate with the words being spoken, but not every word is displayed, therefore enabling an alternative range of verbal associations to emerge. “Auric Variations” plays with the mix of affirmation and anxiety that can underscore contemporary subjective experiences and the new age techniques we sometimes used to understand them.
Resumo:
In Queensland, at least 93 bodies exist to represent the interests of, and provide other services for, their farmer members, and their industries. The bodies vary greatly in focus, roles and activities, priorities, resources, size, and affiliations with other bodies. Results from a survey of 68 producer representative bodies (PRBs), and other data and information are used to examine the demand for, and supply of, farmer representational and other services in Queensland. The main results were: 1. member demand for services varies considerably between PRBs and is influenced by numerous factors; 2. members and non-members of one PRB vary significantly in the importance attached to some services; 3. the types of activities undertaken by PRBs varies between those for emerging and established industries; and 4. PRBs with paid staff/officers undertake more activities than others. The paper concludes that PRBs must continue to evolve and adapt their operations and structures to take account of changes in member and industry needs, external environments, cost pressures, resource availability, and sources of funding/assistance.