920 resultados para decoupled image-based visual servoing
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
An augmented reality (AR) device must know observer’s location and orientation, i.e. observer’s pose, to be able to correctly register the virtual content to observer’s view. One possible way to determine and continuously follow-up the pose is model-based visual tracking. It supposes that a 3D model of the surroundings is known and that there is a video camera that is fixed to the device. The pose is tracked by comparing the video camera image to the model. Each new pose estimate is usually based on the previous estimate. However, the first estimate must be found out without a prior estimate, i.e. the tracking must be initialized, which in practice means that some model features must be identified from the image and matched to model features. This is known in literature as model-to-image registration problem or simultaneous pose and correspondence problem. This report reviews visual tracking initialization methods that are suitable for visual tracking in ship building environment when the ship CAD model is available. The environment is complex, which makes the initialization non-trivial. The report has been done as part of MARIN project.
Resumo:
Kandidaatintyö tehtiin osana PulpVision-tutkimusprojektia, jonka tarkoituksena on kehittää kuvapohjaisia laskenta- ja luokittelumetodeja sellun laaduntarkkailuun paperin valmistuksessa. Tämän tutkimusprojektin osana on aiemmin kehitetty metodi, jolla etsittiin kaarevia rakenteita kuvista, ja tätä metodia hyödynnettiin kuitujen etsintään kuvista. Tätä metodia käytettiin lähtökohtana kandidaatintyölle. Työn tarkoituksena oli tutkia, voidaanko erilaisista kuitukuvista laskettujen piirteiden avulla tunnistaa kuvassa olevien kuitujen laji. Näissä kuitukuvissa oli kuituja neljästä eri puulajista ja yhdestä kasvista. Nämä lajit olivat akasia, koivu, mänty, eukalyptus ja vehnä. Jokaisesta lajista valittiin 100 kuitukuvaa ja nämä kuvat jaettiin kahteen ryhmään, joista ensimmäistä käytettiin opetusryhmänä ja toista testausryhmänä. Opetusryhmän avulla jokaiselle kuitulajille laskettiin näitä kuvaavia piirteitä, joiden avulla pyrittiin tunnistamaan testausryhmän kuvissa olevat kuitulajit. Nämä kuvat oli tuottanut CEMIS-Oulu (Center for Measurement and Information Systems), joka on mittaustekniikkaan keskittynyt yksikkö Oulun yliopistossa. Yksittäiselle opetusryhmän kuitukuvalle laskettiin keskiarvot ja keskihajonnat kolmesta eri piirteestä, jotka olivat pituus, leveys ja kaarevuus. Lisäksi laskettiin, kuinka monta kuitua kuvasta löydettiin. Näiden piirteiden eri yhdistelmien avulla testattiin tunnistamisen tarkkuutta käyttämällä k:n lähimmän naapurin menetelmää ja Naiivi Bayes -luokitinta testausryhmän kuville. Testeistä saatiin lupaavia tuloksia muun muassa pituuden ja leveyden keskiarvoja käytettäessä saavutettiin jopa noin 98 %:n tarkkuus molemmilla algoritmeilla. Tunnistuksessa kuitujen keskimäärinen pituus vaikutti olevan kuitukuvia parhaiten kuvaava piirre. Käytettyjen algoritmien välillä ei ollut suurta vaihtelua tarkkuudessa. Testeissä saatujen tulosten perusteella voidaan todeta, että kuitukuvien tunnistaminen on mahdollista. Testien perusteella kuitukuvista tarvitsee laskea vain kaksi piirrettä, joilla kuidut voidaan tunnistaa tarkasti. Käytetyt lajittelualgoritmit olivat hyvin yksinkertaisia, mutta ne toimivat testeissä hyvin.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a novel template-based meshing approach for generating good quality quadrilateral meshes from 2D digital images. This approach builds upon an existing image-based mesh generation technique called Imeshp, which enables us to create a segmented triangle mesh from an image without the need for an image segmentation step. Our approach generates a quadrilateral mesh using an indirect scheme, which converts the segmented triangle mesh created by the initial steps of the Imesh technique into a quadrilateral one. The triangle-to-quadrilateral conversion makes use of template meshes of triangles. To ensure good element quality, the conversion step is followed by a smoothing step, which is based on a new optimization-based procedure. We show several examples of meshes generated by our approach, and present a thorough experimental evaluation of the quality of the meshes given as examples.
Resumo:
Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.
Resumo:
A imagem mental e a memória visual têm sido consideradas como componentes distintos na codificação da informação, e associados a processos diferentes da memória de trabalho. Evidências experimentais mostram, por exemplo, que o desempenho em tarefas de memória baseadas na geração de imagem mentais (imaginação visual) sofre a interferência do ruído visual dinâmico (RVD), mas não se observa o mesmo efeito em tarefas de memória visual baseadas na percepção visual (memória visual). Embora várias evidências mostrem que tarefas de imaginação e de memória visual sejam baseadas em processos cognitivos diferentes, isso não descarta a possibilidade de utilizarem também processos em comum e que alguns resultados experimentais que apontam diferenças entre as duas tarefas resultem de diferenças metodológicas entre os paradigmas utilizados para estuda-las. Nosso objetivo foi equiparar as tarefas de imagem mental visual e memória visual por meio de tarefas de reconhecimento, com o paradigma de dicas retroativas espaciais. Sequências de letras romanas na forma visual (tarefa de memória visual) e acústicas (tarefa de imagem mental visual) foram apresentadas em quatro localizações espaciais diferentes. No primeiro e segundo experimento analisou-se o tempo do curso de recuperação tanto para o processo de imagem quanto para o processo de memória. No terceiro experimento, comparou-se a estrutura das representações dos dois componentes, por meio da apresentação do RVD durante a etapa de geração e recuperação. Nossos resultados mostram que não há diferenças no armazenamento da informação visual durante o período proposto, porém o RVD afeta a eficiência do processo de recuperação, isto é o tempo de resposta, sendo a representação da imagem mental visual mais suscetível ao ruído. No entanto, o processo temporal da recuperação é diferente para os dois componentes, principalmente para imaginação que requer mais tempo para recuperar a informação do que a memória. Os dados corroboram a relevância do paradigma de dicas retroativas que indica que a atenção espacial é requisitada em representações de organização espacial, independente se são visualizadas ou imaginadas.
Resumo:
Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.
Resumo:
Current image database metadata schemas require users to adopt a specific text-based vocabulary. Text-based metadata is good for searching but not for browsing. Existing image-based search facilities, on the other hand, are highly specialised and so suffer similar problems. Wexelblat's semantic dimensional spatial visualisation schemas go some way towards addressing this problem by making both searching and browsing more accessible to the user in a single interface. But the question of how and what initial metadata to enter a database remains. Different people see different things in an image and will organise a collection in equally diverse ways. However, we can find some similarity across groups of users regardless of their reasoning. For example, a search on Amazon.com returns other products also, based on an averaging of how users navigate the database. In this paper, we report on applying this concept to a set of images for which we have visualised them using traditional methods and the Amazon.com method. We report on the findings of this comparative investigation in a case study setting involving a group of randomly selected participants. We conclude with the recommendation that in combination, the traditional and averaging methods would provide an enhancement to current database visualisation, searching, and browsing facilities.
Resumo:
The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.
Resumo:
Aims of study: 1) Describe the importance of human visual system on lesion detection in medical imaging perception research; 2) Discuss the relevance of research in medical imaging addressing visual function analysis; 3) Identify visual function tests which could be conducted on observers prior to participation in medical imaging perception research.
Resumo:
Background: We examined one's own body image perception and its association with reported weight-related behavior among adolescents of a rapidly developing country in the African region. Methods: We conducted a school-based survey of 1432 students aged 11-17 years in the Seychelles. Weight and height were measured, and thinness, normal weight and overweight were assessed along standard criteria. A self-administered and anonymous questionnaire was administered. Perception of body image was assessed using both a closed-ended question (CEQ) and the Stunkard's pictorial silhouettes (SPS). Finally, a question assessed voluntary attempts to change weight. Results: Overall, 14.1% of the students were thin, 63.9% were normal-weight, and 22.0% were overweight or obese. There was fair agreement between actual weight status and self-perceived body image based on either CEQ or SPS. However, a substantial proportion of the overweight students did not consider themselves as overweight (SPS: 24%, CEQ: 34%) and, inversely, a substantial proportion of the normal-weight students considered themselves as too thin (SPS: 29%, CEQ: 15%). Among the overweight students, an adequate attempt to lose weight was reported more often by boys and girls who perceived themselves as overweight vs. not overweight (72-88% vs. 40-71%, p <0.05 for most comparisons). Among the normal-weight students, an inadequate attempt to gain weight was reported more often by boys and girls who perceived themselves as thin vs. not thin (27-68% vs. 11-19%, p <0.05). Girls had leaner own body ideals than boys. Conclusions: We found that substantial proportions of overweight students did not perceive themselves as overweight and/or did not want to lose weight and, inversely, that many normalweight students perceived themselves as too thin and/or wanted to gain weight: this points to forces that can drive the upwards overweight trends. Appropriate perception of one's weight was associated with adequate weight-control behavior, although not strongly, emphasizing that appropriate weight perception is only one of several factors driving adequate weight-related behavior. These findings emphasize the need to address appropriate perception of one's own weight and adequate weight-related behavior in adolescents for both individual and community weight-related interventions.