993 resultados para damping properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent development of using negative stiffness inclusions to achieve extreme overall stiffness and mechanical damping of composite materials reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the Voigt, Reuss, and Hashin-Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films with unusual in-plane mechanical properties. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a structure vibrates immersed in a fluid it is known that the dynamic properties of the system are modified. The surrounding fluid will, in general, contribute to the inertia, the rigidity and the damping coefficient of the coupled fluid-structure system. For light structures, like spacecraft antennas, even when the fluid is air the contribution to the dynamic properties can be important. For not so light structures the ratio of the equivalent fluid/structure mass and rigidity can be very small and the fluid contribution could be neglected. For the ratio of equivalent fluid/structure damping both terms are of the same order and therefore the fluid contribution must be studied. The working life of the spacecraft structure would be on space and so without any surrounding fluid. The response of a spacecraft structure on its operational life would be attenuated by the structural damping alone but when the structure is dynamically tested on the earth the dynamic modal test is performed with the fluid surrounding it. The results thus are contaminated by the effects of the fluid. If the damping added by the fluid is of the same order as the structural damping the response of the structure in space can be quite different to the response predicted on earth. It is therefore desirable to have a method able to determine the amount of damping induced by the fluid and that should be subtracted of the total damping measured on the modal vibration test. In this work, a method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. The plate is assumed to vibrate harmonically with the vacuum modes and the generalized forces matrix due to the fluid is thus computed. For a compressible fluid this matrix is formed by complex numbers including terms of inertia, rigidity and damping. The matrix due to the fluid loading is determined by a boundary element method (BEM). The BEM used is of circular rings on the plate surface so the number of elements to obtain an accurate result is very low. The natural frequencies of the system are computed by an iteration procedure one by one and also the damping fluid contribution. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stichiometric mixture of hardener, flydust and aluminium powder under microwave energy. In this work, the curing process of thin layers of epoxy resins using microwave radiation was investigated as an alternative technique that can be implemented to develop a new rapid product development technique. In this study it was observed that the curing time and temperature were a function of the percentage of hardener and fillers presence in the epoxy resins. Initially dielectric properties of epoxy resins with hardener were measured which was directly correlated to the curing process in order to understand the properties of cured specimen. Tensile tests were conducted on the three different types of epoxy resins with hardener and fillers. Modifying dielectric properties of the mixtures a significant decrease in curing time was observed. In order to study the microstructural changes of cured specimen the morphology of the fracture surface was carried out by using scanning electron microscopy.