923 resultados para cysteine proteinase
Resumo:
We report the comparative proteomic and antivenomic characterization of the venoms of subspecies cascavella and collilineatus of the Brazilian tropical rattlesnake Crotalus durissus. The venom proteomes of C. d. collilineatus and C. d. cascavella comprise proteins in the range of 4-115 kDa belonging to 9 and 8 toxin families, respectively. Collilineatus and cascavella venoms contain 20-25 main toxins belonging to the following protein families: disintegrin, PLA(2), serine proteinase, cysteine-rich secretory protein (CRISP), vascular endothelial growth factor-like (VEGF), L-amino acid oxidase, C-type lectin-like, and snake venom metalloproteinase (SVMP). As judged by reverse-phase HPLC and mass spectrometry, cascavella and collilineatus share about 90% of their venom proteome. However, the relative occurrence of the toxin families departs among the two C. durissus subspecies venoms. The most notable difference is the presence of the myotoxin crotamine in some C. d. collilineatus specimens (averaging 20.8% of the total proteins of pooled venom), which is absent in the venom of C. d. cascavella. On the other hand, the neurotoxic PLA2 crotoxin represents the most abundant protein in both C. durissus venoms, comprising 67.4% of the toxin proteome in C. d. collilineatus and 72.5% in C. d. cascavella. Myotoxic PLA(2)s are also present in the two venoms albeit in different relative concentrations (18.1% in C. d. cascavella vs. 4.6% in C. d. collilineatus). The venom composition accounts for the clinical manifestations caused by C. durissus envenomations: systemic neurotoxicity and myalgic symptoms and coagulation disturbances, frequently accompanied by myoglobinuria and acute renal failure. The overall compositions of C. d. subspecies cascavella and collilineatus venoms closely resemble that of C. d. terrificus, supporting the view that these taxa can be considered geographical variations of the same species. Pooled venom from adult C.d. cascavella and neonate C.d. terrificus lack crotamine, whereas this skeletal muscle cell membrane depolarizing inducing myotoxin accounts for similar to 20% of the total toxins of venom pooled from C.d. collilineatus and C.d. terrificus from Southern Brazil. The possible relevance of the observed venom variability among the tropical rattlesnake subspecies was assessed by antivenomics using anti-crotalic antivenoms produced at Instituto Butantan and Instituto Vital Brazil. The results revealed that both antivenoms exhibit impaired immunoreactivity towards crotamine and display restricted (similar to 60%) recognition of PLA(2) molecules (crotoxin and D49-myotoxins) from C. d. cascavella and C. d. terrificus venoms. This poor reactivity of the antivenoms may be due to a combination of factors: on the one hand, an inappropriate choice of the mixture of venoms for immunization and, on the other hand, the documented low immunogenicity of PLA(2) molecules. C. durissus causes most of the lethal snakebite accidents in Brazil. The implication of the geographic variation of venom composition for the treatment of bites by different C. durissus subspecies populations is discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.
Resumo:
Female reproductive tissues of the ornamental tobacco amass high levels of serine proteinase inhibitors (PIs) for protection against pests and pathogens. These PIs are produced from a precursor protein composed of six repeats each with a protease reactive site. Here we show that proteolytic processing of the precursor generates five single-chain PIs and a remarkable two-chain inhibitor formed by disulfide-bond Linkage of Nand C-terminal peptide fragments. Surprisingly, PI precursors adopt this circular structure regardless of the number of inhibitor domains, suggesting this bracelet-like conformation is characteristic of the widespread potato inhibitor II (Pot II) protein family.
Resumo:
Background: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (Pls) that are derived from a 43 kDa precursor protein, NaProPl. NaProPl contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native Pls. An unusual feature of NaProPl is that the structural domains lie across adjacent repeats and that the sixth Pl domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPl repeat (aPl1) forms a basis for unravelling the mechanism by which this protein may have evolved, Results: The three-dimensional structure of aPl1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native Pls. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPl, exists as a disordered loop in aPl1. The presence of this loop in aPl1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. Conclusions: A single repeat from NaProPl is capable of folding into a compact globular domain that displays native-like Pl activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPl evolved.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Resumo:
The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a (Fe2S2)-S-III cluster in place. In contrast, the other proteins are isolated in colourless forms, although a (Fe2S2)-S-III cluster may be assembled in the C42G protein via incubation with Fe-III and sulfide. The four mutant proteins were isolated as stable mononuclear Hg-II forms which were converted to unstable mononuclear Fe-III preparations that contain both holo and apo protein. The Fe-III systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe-III form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe-III form in which a ligand appears to be supplied by the protein chain. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-0020355-1.
Resumo:
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (similar to4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.
Resumo:
CysView is a web-based application tool that identifies and classifies proteins according to their disulfide connectivity patterns. It accepts a dataset of annotated protein sequences in various formats and returns a graphical representation of cysteine pairing patterns. CysView displays cysteine patterns for those records in the data with disulfide annotations. It allows the viewing of records grouped by connectivity patterns. CysView's utility as an analysis tool was demonstrated by the rapid and correct classification of scorpion toxin entries from GenPept on the basis of their disulfide pairing patterns. It has proved useful for rapid detection of irrelevant and partial records, or those with incomplete annotations. CysView can be used to support distant homology between proteins. CysView is publicly available at http://research.i2r.a-star.edu.sg/CysView/.
Resumo:
OBJECTIVE: Secretory leukocyte proteinase inhibitor (SLPI) is an endogenous proteinase inhibitor present in mucosal secretions. It also displays antimicrobial activity including anti-human immunodeficiency virus activity. This protease inhibitor is also expressed in submandibular glands (SMG), but there are few data on its expression in AIDS patients with infectious conditions. METHODS: We analyzed the expression of SLPI using immunohistochemistry in submandibular gland samples of 36 AIDS patients [10 with normal histology, 10 with chronic nonspecific sialadenitis, eight with mycobacteriosis, and eight with cytomegalovirus (CMV) infection] and 10 HIV-negative controls. The proteinase inhibitor was quantified using image analysis and expressed as % of positively stained area. RESULTS: There was a higher expression of SLPI in AIDS patients with CMV infection (% of stained area, mean +/- SD: 37.37 +/- 14.45) when compared with all other groups (P = 0.009). There were no significant differences between control subjects (22.70 +/- 9.42%) and AIDS patients without histologic alterations (18.10 +/- 7.58%), with chronic nonspecific sialadenitis (17.13 +/- 5.36%), or mycobacterial infection (21.09 +/- 4.66%). CONCLUSION: Cytomegalovirus infection increases SLPI expression in the SMG of AIDS patients. Our results reveal new insights into the pathogenic association between HIV and CMV in AIDS patients.
Resumo:
Millions of people worldwide are affected by anthropogenic air pollution derived from the combustion of fossil fuels. In this work, we tested the effects of fetal, lactation and post-weaning ambient air pollution exposure on total homocysteine (tHcy) concentrations and on a downstream pathway element, the plasma cysteine (Cys) concentration. Two similar exposure chambers (polluted and filtered chamber) were located near an area with heavy traffic in Sao Paulo, Brazil, and male Swiss mice were housed there from the pre-natal period until 3 months of age. Groups during fetal, lactation and adult periods of exposure were apportioned, and tHcy and Cys plasma concentrations were assessed when the animals were 3 months old. In our study, both the tHcy and Cys concentrations were decreased in groups that spent their final stage of life in polluted chambers, suggesting recent alterations in tHcy and Cys concentrations due to air pollution exposure. The possible relationship of these data with cardiovascular dysfunction is still a matter of controversy in animals; nevertheless, epigenetic mechanisms emerge as a possible issue to consider in the investigation of the link between air pollution and Hcy measurement. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Oxidative stress disturbances have been reported in depressed patients and in animals submitted to stress. Recent evidence suggests that antidepressants may have antioxidant properties. However, the therapeutic potential of antioxidants as antidepressant drugs has not been systematically investigated. Therefore, this study tested the hypothesis that N-acetyl-L-cysteine (NAC), a cysteine prodrug with powerful antioxidant activity, would possess anti depressant-like properties in the forced swimming test. Male Wistar rats were subjected to 15 min of forced swimming and immediately afterward, 5, and 23 h later received intraperitoneal injections of NAC (5, 15, 50, 150, and 250 mg/kg), imipramine, 0 5 mg/kg) or vehicle. One hour later they were submitted to the 5 min test swimming session, where immobility time was recorded. Independent groups of animals received the same treatments and their exploratory activity was measured in an open arena for 5 min. NAC (at the doses of 15, 50, and 150 mg/kg) and imipramine induced a significant decrease in immobility time without changing exploratory behavior measured in an open arena. These results suggest that antioxidants such as NAC may have antidepressant effects. Behavioural Pharmacology (C) 19:747-750 2008 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Introduction: Collagen-degrading matrix metalloproteinases (MMPs) are expressed by odontoblasts and present in dentin. We hypothesized that odontoblasts express other collagen-degrading enzymes such as cysteine cathepsins, and their activity would be present in dentin, because odontoblasts are known to express at least cathepsin D. Effect of transforming growth factor beta (TGF-beta) on cathepsin expression was also analyzed. Methods: Human odontoblasts and pulp tissue were cultured with and without TGF-beta, and cathepsin gene expression was analyzed with DNA microarrays. Dentin cathepsin and MMP activities were analyzed by degradation of respective specific fluorogenic substrates. Results: Both odontoblasts and pulp tissue demonstrated a wide range of cysteine cathepsin expression that gave minor responses to TGF-beta. Cathepsin and MMP activities were observed in all dentin samples, with significant negative correlations in their activities with tooth age. Conclusions: These results demonstrate for the first time the presence of cysteine cathepsins in dentin and suggest their role, along with MMPs, in dentin modification with aging. (J Endod 2010;36:475-481)