457 resultados para cyanide electrooxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of CO electrooxidation on different catalysts using in situ FTIR spectroscopy is presented. As electrode materials, polycrystalline Pt and Ru and a PtRu (50:50) alloy are used. The latter is one of the well-known active alloys for CO oxidation. The potential dependence of the band frequencies for the CO stretch indicates the formation of relatively compact islands at pure Pt and Ru, and a loose adlayer structure at the alloy. This loose structure has a positive effect on the rate of oxidative desorption. CO submonolayer coverages are obtained by integrating the absorption bands for CO produced upon oxidation of adsorbed CO. The band intensities measured at Pt, Ru, and PtRu indicate an influence of the substrate on the absorption coefficient of the CO stretch. It is shown that for a correct description of the catalyst properties toward CO electrooxidation, it must be distinguished between bulk and adsorbed CO. In contrast to the statement of most of the recent papers that a PtRu alloy (50:50) is the material with the highest activity for CO oxidation, it is demonstrated and rationalized in the present paper that for bulk CO oxidation pure Ru is the best catalyst. © 1999 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and electrooxidation of CO at a Ru(0001) electrode in perchloric acid solution have been investigated as a function of temperature, potential and time using in situ FTIR spectroscopy. This builds upon and extends previous work on the same system carried out at room temperature. As was observed at room temperature, both linear (CO) and 3-fold-hollow (CO) binding CO adsorbates (bands at 2000-2045 cm and 1768-1805 cm, respectively) were detected on the Ru(0001) electrode at 10°C and 50°C. However, the temperature of the Ru(0001) electrode had a significant effect upon the structure and behavior of the CO adlayer. At 10°C, the in-situ FTIR data showed that the adsorbed CO species still remain in rather compact islands up to ca. 1100 mV vs Ag/AgCl as the CO oxidation reaction proceeds, with oxidation occurring only at the boundaries between the CO and active surface oxide/hydroxide domains. However, the IR data collected at 50°C strongly suggest that the adsorbed CO species are present as relatively looser and weaker structures, which are more easily electro-oxidized. The temperature-, potential-, and coverage-dependent relaxation and compression of the CO adlayer at low coverages are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is essential to correctly determine the nature of the initial adsorbate in order to calculate the pathway for any given reaction. Recent literature provides conflicting information on the first step in the methanol decomposition pathway. This work sets out to establish what role the solution and the surface have to play in the initial adsorption-deprotonation process. Density functional theory (DFT) calculations, in combination with a cluster-continuum model approach are used to resolve the nature of the adsorbing species. We show that methanol is the dominant species in solution over methoxide, and also has a smaller barrier to adsorption. The nature of the surface species is revealed to be a methanol-OH complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahexahedral Pd nanocrystals (THH Pd NCs) were prepared on a glassy carbon electrode using a programmed square-wave potential electrodeposition method, and modified by Bi adatoms with a range of coverages via the cyclic voltammetry method. The reactivity of the catalysts prepared towards ethanol electrooxidation reaction (EOR) was studied in alkaline medium at various temperatures and under other conditions that practical fuel cells operate. Significant activity enhancements were observed for the Bi-modified THH Pd NCs with an optimum Bi coverage (θBi) of around 0.68 being obtained. Furthermore, it was found that increasing temperature from 25 ºC to 60 ºC enhances the reactivity significantly. The general kinetics data of EOR on Bi-decorated and bare THH Pd NCs have also been obtained, from the activation energy calculated based on Arrhenius plots, and compared. At the optimum Bi coverage, an enhancement in the activity of almost 3 times was achieved, and the corresponding activation energy was found to be reduced significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave spectra of CHD2CN and CHD2NC have been measured from 18 to 40 GHz; about 20 type A and 30 type C transitions have been observed for each molecule. These have been fitted to a Hamiltonian using 3 rotational constants, and 5 quartic and 4 sextic distortion constants, in the IrS reduction of Watson [in “Vibrational spectra and structure” Vol. 6 (1977)]; the standard error of the fit is 26 kHz. For methyl cyanide the 5 quartic distortion constants have been used to further refine the recent harmonic force field of Duncan et al. [J. Mol. Spectrosc. 69, 123 (1978)], but the changes are small. Finally, for both molecules, the harmonic force field has been used to determine zero point average moments of inertia Iz from the ground state rotational constants for many isotopic species, and these have been used to determine an rz structure. The results are compared with rs structure calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews a series of alternative lixiviant systems for the recovery of gold from ores and concentrates. For over 100 years, cyanide has been the leach reagent of choice in gold mining because of its high gold recoveries, robustness and relatively low costs. The environmental damages resulting from its mismanagement, however, have initiated widespread research aimed at identifying and developing less toxic leaching agents. The most widely-researched alternative lixiviants for gold ores are examined in this paper, but it is evident that none has yet made any significant inroad into the dominant position of cyanide as the reagent of choice at the vast majority of gold mines worldwide. (c) 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entomopathogenic bacterial strains Pseudomonas (Flavimonas) oryzihabitans and Xenorhabdus nematophilus, both bacterial symbionts of the entomopathogenic nematodes Steinernema abbasi and S. carpocapsae have been recently used for suppression of soil-borne pathogens. Bacterial biocontrol agents (P. oryzihabitans and X nematophila) have been tested for production of secondary metabolites in vitro and their fungistatic effect,on mycelium and spore development of soil-borne pathogens. Isolates of Pythium spp. and Rhizoctonia solani, the causal agent of cotton damping-off, varied in sensitivity in vitro to the antibiotics phenazine-I-carboxylic acid (PCA), cyanide (HCN) and siderophores produced by bacterial strains shown previously to have potential for biological control of those pathogens. These findings affirm the role of the antibiotics PCA, HCN and siderophores in the biocontrol activity of these entomopathogenic strains and support earlier evidence that mechanisms of secondary metabolites are responsible for suppression of damping-off diseases. In the present studies colonies of R oryzihabitans showed production of PCA with presence of crystalline deposits after six days development and positive production where found as well in the siderophore's assay when X nematophila strain indicated HCN production in the in vitro assays. In vitro antifungal activity showed that bacteria densities of 101 to 10(6)cells/ml have antifungal activity in different media cultures. The results show further that isolates of Pythium spp. and R. solani insensitive to PCA, HCN and siderophores are present in the pathogen population and provide additional justification for the use of mixtures of entomopathogenic strains that employ different mechanisms of pathogen suppression to manage damping-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected silicas were modified with the covalently bound ligand 2,6-bis(benzoxazoyl)pyridine (BBOP), equilibrated with copper(II) nitrate, then challenged with toxic vapour containing HCN (8000 mg m(-3) at 80% relative humidity). The modified SBA-15 material (Cu-BBOP-SBA-15) had an improved breakthrough time for HCN (36 min at a flow rate of 30 cm(3) min(-1)) when compared to the other siliceous materials prepared in this study, equating to a hydrogen cyanide capacity of 58 mg g(-1), which is close to a reference activated carbon adsorbent (24 min at 50 cm(3) min(-1)) that can trap 64 mg g(-1). The enhanced performance observed with Cu-BBOP-SBA-15 has been related to the greater accessibility of the functional groups, arising from the ordered nature of the interconnected porous network and large mesopores of 5.5 nm within the material modified with the Cu(II)-BBOP complex. Modified MCM-41 and MCM-48 materials (Cu-BBOP-MCM-41 and Cu-BBOP-MCM-48) were found to have lower hydrogen cyanide capacities (38 and 32 mg g(-1) respectively) than the Cu-BBOP-SBA-15 material owing to the restricted size of the pores (2.2 and <2 nm respectively). The materials with poor nano-structured ordering were found to have low hydrogen cyanide capacities, between 11 and 19 mg g(-1), most likely owing to limited accessibility of the functional groups. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures Of four alkali-metal copper (I) cyanides, KCu2(CN)(3)(H2O)-H-.-II (I), K2Cu3(CN)(5) (II), CsCu3(CN)(4) (III) and KCu3(CN)(4) (IV) are described. Three of these, ((II)-(IV)), with previously unknown ACN:CuCN ratios have new copper-cyanide frameworks, whilst (1) is a new polymorph of KCu2(CN)(3)(H2O)-H-.. These structures are discussed in terms of assembly from the simple building units Cu(CN)(2/2), Cu(CN)(3/2), Cu(CN)(2/2)(CN)(1/1) and Cu(CN)(4/2). Compounds (I), (II) and (III) are layered materials based on (6,3) nets containing (CuCN)(6) rings (I) and (CuCN)(8) rings (II) and (III). In compound (IV), (4,4) nets containing (CuCN)(12) rings link to generate a three-dimensional network. Both (III) and (IV) are examples of interpenetrating solids in which two and four identical networks interweave, respectively. These materials illustrate the structural versatility of copper (I) in cyanide frameworks. (c) 2006 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4-n(NC)n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn−N and Zn−C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ~0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn−C≡N−Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contribution at temperatures up to 295 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow system designed with solenoid valves is proposed for determination of weak acid dissociable cyanide, based on the reaction with o-phthalaldehyde (OPA) and glycine yielding a highly fluorescent isoindole derivative. The proposed procedure minimizes the main drawbacks related to the reference batch procedure, based on reaction with barbituric acid and pyridine followed by spectrophotometric detection, i.e., use of toxic reagents, high reagent consumption and waste generation, low sampling rate, and poor sensitivity. Retention of the sample zone was exploited to increase the conversion rate of the analyte with minimized sample dispersion. Linear response (r=0.999) was observed for cyanide concentrations in the range 1-200 mu g L(-1), with a detection limit (99.7% confidence level) of 0.5 mu g L(-1)(19 nmol L(-1)). The sampling rate and coefficient of variation (n=10) were estimated as 22 measurements per hour and 1.4%, respectively. The results of determination of weak acid dissociable cyanide in natural water samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. Additionally to the improvement in the analytical features in comparison with those of the flow system with continuous reagent addition (sensitivity and sampling rate 90 and 83% higher, respectively), the consumption of OPA was 230-fold lower.