903 resultados para cutting force
Resumo:
The magnetic saw effect, induced by the Lorentz force generated due to the application of a series of electromagnetic ( EM) pulses, can be utilized to cut a metallic component containing a pre-existing cut or crack. By combining a mechanical force with the Lorentz force, the cut can be propagated along any arbitrary direction in a controlled fashion, thus producing an `electromagnetic jigsaw', yielding a novel tool-less, free-formed manufacturing process, particularly suitable for hard-to-cut metals. This paper presents validation of the above concept based on a simple analytical model, along with experiments on two materials - Pb foil and steel plate. (C) 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers
Resumo:
In technological superconductors, the Lorentz force on the flux vortices is opposed by inhomogeneous pinning and so the critical current may be controlled by a combination of vortex entanglement, cutting, and cross-joining. To understand the roles of these processes we report measurements of structures in which a weak pinning layer is sandwiched between two strongly pinning leads. Quantitative modeling of the results demonstrates that in such systems the critical current is limited by the deformation of individual vortices and not by subsequent cross-joining processes.
Resumo:
By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are simulated. Two partial edge dislocations are introduced into workpiece Si, it is found that the motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocations is far below the yield strength of Si. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.
Resumo:
Tubular permanent magnet linear generators are a promising generator technology for use in marine renewables. One aspect of their design relates to the conditions necessary for achieving a smooth thrust response from the generator, free from cogging and periodic variations due to spatial harmonics of the flux cutting the generator coils. This paper presents an experimental and finite element study of the sources of thrust ripple in a prototype linear generator for marine generation. A simple self-commutated control scheme is shown, which uses linear Hall-effect sensors and look-up-table based feed-forward compensation to derive the excitation currents required to drive the machine with constant force. Details of the controller's FPGA based implementation are given, including its strategy for detecting sensor failure. © 2011 IEEE.
Resumo:
Context : Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. Objective : To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Design : Crossover study. Setting : Laboratory. Patients or Other Participants : A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Main Outcome Measure(s) : Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). Results : During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Conclusions : Although a rigid carbon graphite footplate altered some aspects of the plantar- pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal.
Resumo:
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates.
Resumo:
3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1?1?1) <-1?1?0>, (1?1?1) <-2?1?1>, (1?1?0) <-1?1?0>, (1?1?0) <0?0?1>, (1?1?0) <1?1?-2>, (0?0?1) <-1?1?0>, (0?0?1) <1?0?0>, (1?1?-2) <1?-1?0> and (1?-2?0) <2?1?0>.
In order to ensure the reliability of the simulation results, two separate simulation trials were carried out with different machining parameters. In the first trial, a cutting tool rake angle of -25°, d/r (uncut chip thickness/cutting edge radius) ratio of 0.57 and cutting velocity of 10 m s-1 were used whereas a second trial was done using a cutting tool rake angle of -30°, d/r ratio of 1 and cutting velocity of 4 m s-1. Both the trials showed similar anisotropic variation.
The simulated orthogonal components of thrust force in 3C–SiC showed a variation of up to 45%, while the resultant cutting forces showed a variation of 37%. This suggests that 3C–SiC is highly anisotropic in its ease of deformation. These results corroborate with the experimentally observed anisotropic variation of 43.6% in Young's modulus of 3C–SiC. The recently developed dislocation extraction algorithm (DXA) [1, 2] was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientations and cutting directions. Based on the overall analysis, it was found that 3C–SiC offers ease of deformation on either (1?1?1) <-1?1?0>, (1?1?0) <0?0?1>, or (1?0?0) <1?0?0> setups.
Resumo:
Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (111) surface of silicon and the von Mises stress to yield the silicon reduces by 25% and 32%, respectively, at 1173 K compared to what is required at 300 K. The room temperature cutting anisotropy in the von Mises stress and the room temperature cutting anisotropy in the specific cutting energy (work done by the tool in removing unit volume of material) were obtained as 12% and 16% respectively. It was observed that this changes to 20% and 40%, respectively, when cutting was performed at 1500 K, signifying a very strong correlation between the anisotropy observed during cutting and the machining temperature. Furthermore, using the atomic strain criterion, the width of primary shear zone was found to vary with the orientation of workpiece surface and temperature i.e. it remains narrower while cutting the (111) surface of silicon or at higher machining temperatures. A major anecdote of the study based on the potential function employed in the study is that, irrespective of the cutting plane or the cutting temperature, the state of the cutting edge of the diamond tool did not show direct diamond to graphitic phase transformation.
Resumo:
"Mémoire présenté à la Faculté des Études supérieures en vue de l'obtention du grade de LL.M. en Maîtrise en droit Option recherche"
Resumo:
A general theory of violence may only be possible in the sense of a meta-theoretical framework, As such it should comprise a parsimonious set of general mechanisms that operate across various manifestations of violence. In order to identify such mechanisms, a general theory of violence needs to equally consider all manifestations of violence, in all societies, and at all times. Departing from this assumption this paper argues that three theoretical approaches may be combined in a non-contradictory way to understand violence as goal-directed instrumental behaviour: a theory of the judgment and decision-making processes operating in the situations that give rise to violence; a theory of the evolutionary processes that have resulted in universal cognitive and emotional mechanisms associated with violence; and a theory of the way in which social institutions structure violence by selectively enhancing its effectiveness for some purposes (i.e legitimate use of force) and controlling other types of violence (i.e crime). To illustrate the potential use of such a perspective the paper then examines some general mechanisms that may explain many different types of violence. In particular, it examines how the mechanisms of moralistic aggression (Trivers) and moral disengagement (Bandura) may account for many different types of violence.
Resumo:
Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of 'stem-cutting' to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) - it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen-Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.
Resumo:
"January 1984."
Resumo:
This thesis presents an approach to cutting dynamics during turning based upon the mechanism of deformation of work material around the tool nose known as "ploughing". Starting from the shearing process in the cutting zone and accounting for "ploughing", new mathematical models relating turning force components to cutting conditions, tool geometry and tool vibration are developed. These models are developed separately for steady state and for oscillatory turning with new and worn tools. Experimental results are used to determine mathematical functions expressing the parameters introduced by the steady state model in the case of a new tool. The form of these functions are of general validity though their coefficients are dependent on work and tool materials. Good agreement is achieved between experimental and predicted forces. The model is extended on one hand to include different work material by introducing a hardness factor. The model provides good predictions when predicted forces are compared to present and published experimental results. On the other hand, the extension of the ploughing model to taming with a worn edge showed the ability of the model in predicting machining forces during steady state turning with the worn flank of the tool. In the development of the dynamic models, the dynamic turning force equations define the cutting process as being a system for which vibration of the tool tip in the feed direction is the input and measured forces are the output The model takes into account the shear plane oscillation and the cutting configuration variation in response to tool motion. Theoretical expressions of the turning forces are obtained for new and worn cutting edges. The dynamic analysis revealed the interaction between the cutting mechanism and the machine tool structure. The effect of the machine tool and tool post is accounted for by using experimental data of the transfer function of the tool post system. Steady state coefficients are corrected to include the changes in the cutting configuration with tool vibration and are used in the dynamic model. A series of oscillatory cutting tests at various conditions and various tool flank wear levels are carried out and experimental results are compared with model—predicted forces. Good agreement between predictions and experiments were achieved over a wide range of cutting conditions. This research bridges the gap between the analysis of vibration and turning forces in turning. It offers an explicit expression of the dynamic turning force generated during machining and highlights the relationships between tool wear, tool vibration and turning force. Spectral analysis of tool acceleration and turning force components led to define an "Inertance Power Ratio" as a flank wear monitoring factor. A formulation of an on—line flank wear monitoring methodology is presented and shows how the results of the present model can be applied to practical in—process tool wear monitoring in • turning operations.