918 resultados para crofton- weed gall fly (Procecidochares utilis)
Resumo:
Understanding the patterns of genetic structure in the introduced range of invasive species can help elucidate invasion histories and levels of gene flow among populations. Parthenium weed (Parthenium hysterophorus L.; PW) is native to the Gulf of Mexico and central South America but has become globally invasive during the last three decades and little is known about the genetics of this species in its invasive range. The present study was conducted to determine the genetic structure of 95 individual samples from 11 populations (9 from Pakistan and 2 from Australia) of PW using ISSR fingerprinting. A total of 30 ISSR primers were screened; of which eight were selected due to their high polymorphism and reproducibility. In toto 147 bands were amplified, which ranged in size from 200-2000 bp; among which 97 were polymorphic. Genetic diversity within the populations both from Pakistan and Australia ranged between 0.193-0.278. Approximately 18% of genetic variation occurred among and 82% within populations. Principal Coordinate Analysis showed that within the 95 samples two groups were present: one contained samples collected mainly from Pakistan and the second group included the Australian samples along with two populations from Pakistan. Overall, there was limited gene flow among PW populations in Pakistan, although the genetic diversity within populations was high. The degree of genetic variation inferred from various population diversity measures can predict different events of founding populations, which have passed through complicated processes of invasion, experiencing genetic bottlenecks. Taken together, results showed that PW in Pakistan is genetically heterogeneous and may have been the result of multiple introductions.
Resumo:
The use of malathion in fruit fly protein bait sprays has raised serious concerns due to its adverse effects on non-target organisms. This has necessitated the evaluation of novel reduced-risk compounds. This study evaluated the effects of spinosad, fipronil, malathion and chlorpyrifos mixed with fruit fly protein bait (Mauri Pinnacle protein®) on attraction, feeding and mortality of the Queensland fruit fly, Bactrocera tryoni (Froggatt). The effects of outdoor weathering of these mixtures on fly mortality were also determined. In field-cage experiment, protein-starved flies showed the same level of attraction to baits containing spinosad, fipronil, malathion, chlorpyrifos and protein alone used as control. Female protein-starved flies were deterred from feeding on baits containing malathion and chlorpyrifos compared to baits containing spinosad, fipronil and protein alone. Baits containing malathion and chlorpyrifos caused higher fly mortality and rapid fly knock down than spinosad and fipronil. However, spinosad acted slowly and caused an increase in fly mortality over time, causing up to 90% fly mortality after 72-h. Baits containing malathion and chlorpyrifos, applied on citrus leaves and weathered outdoors, had longer residual effectiveness in killing flies than spinosad and fipronil. Residual effectiveness of the spinosad bait mixture waned significantly after 3 days of outdoor weathering. Results suggest that spinosad and fipronil can be potential alternatives for malathion in protein bait sprays.
Resumo:
In a continuation of the authors' recent work, the ultimate tip resistance of a miniature cone using triaxial equipment was determined for samples of dry sand mixed with dry fly ash. The effect of (i) the proportion of fly ash, (ii) the relative density of samples, and (iii) the vertical overburden pressure was examined. It was noted that an addition of fly ash in sand for the same range of relative density leads to a significant reduction in the ultimate tip resistance of the cone (q(cu)). This occurs due to a decrease in the friction angle (phi) of the sample with an increase in the fly ash content for a given relative density. For phi greater than about 30 degrees, two widely used correlation curves from published literature, providing the relationships between q(cu) and phi for cohesionless soils, were found to provide satisfactory predictions, even for sand - fly ash mixtures. As was expected, the values of qcu increase continuously with an increase in the relative density of the soil mass and the vertical effective ( overburden) stress on the sample.
Resumo:
An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.
Resumo:
This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).
Resumo:
The Mt Garnet Landcare Group commissioned a survey of landholders within the Upper Herbert and Upper Burdekin River Catchments to assess the density of native woodlands and to gauge the extent of exotic weed infestation. Twenty-four of 49 landholders responded, representing an area of nearly 500 000 ha or 47% of the total area. Dense native woodland covers 24% (>117 000 ha) of the area surveyed, while a further 30% (140 000 ha) supports moderately dense stands. The dense stands are largely confined to the highly fertile alluvial soils (26% dense woodland) and the lower fertility sandy-surfaced soils (33% or >96 000 ha). Moderate and dense infestations of exotic weeds, principally Lantana camara, occur on 54% (20 000 ha) of alluvial soils and on 13% of sandy-surfaced soils (39 000 ha), where praxelis (Praxelis clematidia) is the major weed. Basaltic soils have low levels of both dense woodland and exotic weed infestation. Some implications of the results are discussed.
Resumo:
We determined the quantity and chemical composition of cuticular hydrocarbons of different strains, sex and age of buffalo flies, Haematobia exigua. The quantity of cuticular hydrocarbons increased from less than 1 µg/fly for newly-emerged flies to over 11 µg/fly in 13 d-old flies. The hydrocarbon chain length varied from C21 to C29, with unbranched alkanes and monounsaturated alkenes the major components. Newly emerged flies produced almost exclusively C27 hydrocarbons. Increasing age was accompanied by the appearance of hydrocarbons with shorter carbon chains and an increase in the proportion of alkenes. 11 Tricosene and 7-tricosene were the most abundant hydrocarbons in mature buffalo flies. Cuticular hydrocarbons of buffalo flies are distinctly different from those of horn flies. The most noticeable differences were in the C23 alkenes, with the major isomers 11- and 7-tricosene in buffalo flies and (Z)-9- and (Z)-5-tricosene in horn flies, respectively. Cuticular hydrocarbon analysis provides a reliable method to differentiate buffalo and horn fly, which are difficult to separate morphologically. The differences in cuticular hydrocarbons also support their recognition as separate species, H. exigua and H. irritans, rather than as subspecies.
Resumo:
The requirement of a suitable energy source during the induced synthesis of nitrate reductase in Image was investigated. The levels of nitrate reductase induced were shown to be energy-dependent, and to vary in response to the type of carbon source provided. Glycerol, fructose, ethanol, glucose, and sucrose served as efficient energy sources. Growth rate of the yeast and the induced level of nitrate reductase were dependent on the ratio of carbon to nitrogen in the induction medium, and ratio of 2 being optimal. Induction of nitrate reductase was inhibited by uncouplers, 2,4-dinitrophenol (DNP), dicumarol and carbonyl cyanide Candida-Utilis -trifluoromethoxy phenyl hydrazone (CCCP), and by cyanide and azide, indicating an absolute energy-dependency. The facilitation of induction of a high level of nitrate reductase by exogenously added ATP as sole source of energy confirmed the obligate requirement of ATP for the synthesis of nitrate reductase in Candida-Utilis.
Resumo:
New methods for controlling blowfly strike will be needed when mulesing is phased out and the availability or efficacy of insecticides for control of fly strike decreases. The Australian Sheep Industry CRC has pursued two approaches for the development of new methods to help control blowfly strike. In the first, genetic resistance of sheep to survival and growth of blowfly larvae was examined. Resistance to growth of larvae was heritable (0.29 ± 0.22). The trait was not associated with resistance to internal parasites, nor was it influenced by wool characteristics such as fibre diameter or coefficient of variation of fibre diameter. This new trait differs from resistance to fly strike associated with resistance to fleece rot. Because measurement of the trait is labour intensive, gene markers or correlated measures are needed before it will be suitable for industry adoption. The second approach examined the impact of larval products on the immmune system of the sheep. Larvae suppress the sheep immune system and thereby limit the ability of the sheep to reject the larvae. The immunosuppresive agent is being purified and strategies to abolish its activity are being explored. Abolition of immunosuppression would create opportunities for the development of new vaccines againts blowfly strike.
Resumo:
The parasitic weed Orobanche crenata inflicts major damage on faba bean, lentil, pea and other crops in Mediterranean environments. The development of methods to control O. crenata is to a large extent hampered by the complexity of host-parasite systems. Using a model of host-parasite interactions can help to explain and understand this intricacy. This paper reports on the evaluation and application of a model simulating host-parasite competition as affected by environment and management that was implemented in the framework of the Agricultural Production Systems Simulator (APSIM). Model-predicted faba bean and O. crenata growth and development were evaluated against independent data. The APSIM-Fababean and -Parasite modules displayed a good capability to reproduce effects of pedoclimatic conditions, faba bean sowing date and O. crenata infestation on host-parasite competition. The r(2) values throughout exceeded 0.84 (RMSD: 5.36 days) for phenological, 0.85 (RMSD: 223.00 g m(-2)) for host growth and 0.78 (RMSD: 99.82 g m(-2)) for parasite growth parameters. Inaccuracies of simulated faba bean root growth that caused some bias of predicted parasite number and host yield loss may be dealt with by more flexibly simulating vertical root distribution. The model was applied in simulation experiments to determine optimum sowing windows for infected and non-infected faba bean in Mediterranean environments. Simulation results proved realistic and testified to the capability of APSIM to contribute to the development of tactical approaches in parasitic weed control.
Revision of the Australian stiletto fly genus Acatopygia Krober (Diptera: Therevidae: Agapophytinae)
Resumo:
The endemic Australian stiletto fly genus Acatopygia Krober is revised. Acatopygia pulchella Krober and Acatopygia paradoxa (Krober) are redescribed and a neotype for A. paradoxa designated. A new species, Acatopygia olivacea sp. nov., is described and a key to Acatopygia species is presented.
Resumo:
Data from the eradication of the incursion of Bactrocera papayae Drew and Hancock (Dipt.: Tephritidae) in Australia (1995-1998) are used to assess the significance of various aspects of invasion theory, including the influence of towns on establishment, influence of propagule pressure on the pattern of establishment, and the existence of source-sink dynamics. Because there were no sentinel traps in place, considerable spread had occurred before the eradication campaign started. The distribution of fly density around the epicentre in the town of Cairns and a transect along the main traffic routes to the north and south fitted a Cauchy model with a tail having the same slope as a power model with an exponent of -2.4 extending to 160 km. The Cauchy model indicated that 50% of the flies on the transect would have occurred within 3.2 km of the epicentre, 90% within 13.2 km, and 99% within 60 km. The two major satellites at Mareeba (35 km from the epicentre in Cairns) and Mossman (65 km) were not used for the transect data and had respectively 15 and 30 times the density predicted by the model. The proportion of traps that caught flies (a measure of site occupancy) fell with distance from the epicentre. B. papayae was trapped consistently on only three of the 16 rainforest transects that were surveyed and these were relatively close to urban areas where eradication efforts were intense. Despite there being no eradication effort in the rainforest, the trends to extinction were similar to those in adjacent areas. The strategy of initially concentrating eradication efforts on the core and major satellites while maintaining a quarantine barrier at the airport and the boundaries of the infested area appears to be the key to the containment and rapid eradication of the incursion.
Resumo:
The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.
Resumo:
Aconophora compressa (Hemiptera: Membracidae), a biological control agent introduced against the weed Lantana camara (Verbenaceae) in Australia, has since been observed on several non-target plant species, including native mangrove Avicennia marina (Acanthaceae). In this study we evaluated the suitability of two native mangroves, A. marina and Aegiceras corniculatum (Myrsinaceae), for the survival and development of A. compressa through no-choice field cage studies. The longevity of females was significantly higher on L. camara (57.7 ± 3.8 days) than on A. marina (43.3 ± 3.3 days) and A. corniculatum (45.7 ± 3.8 days). The proportion of females laying eggs was highest on L. camara (72%) followed by A. marina (36%) and A. corniculatum (17%). More egg batches per female were laid on L. camara than on A. marina and A. corniculatum. Though more nymphs per shoot emerged on L. camara (29.9 ± 2.8) than on A. marina (13 ± 4.8) and A. corniculatum (10 ± 5.3), the number of nymphs that developed through to adults was not significantly different. The duration of nymphal development was longer on A. marina (67 ± 5.8 days) than on L. camara (48 ± 4 days) and A. corniculatum (43 ± 4.6 days). The results, which are in contrast to those from previous glasshouse and quarantine trials, provide evidence that A. compressa adults can survive, lay eggs and complete nymphal development on the two non-target native mangroves in the field under no-choice condition.
Resumo:
Weed management is one of the most important economic and agronomic issues facing farmers in Australia's grain regions. Weed species occurrence and abundance was monitored between 1997 and 2000 on 46 paddocks (sites) across 18 commercial farms located in the Northern Grain Region. The sites generally fell within 4 disjunct regions, from south to north: Liverpool Plains, Moree, Goondiwindi and Kingaroy. While high species richness was found (139 species or species groups), only 8 species occurred in all 4 regions and many (56 species) only occurred at 1 site or region. No species were observed at every site but 7 species (Sonchus spp., Avena spp., Conyza spp., Echinochloa spp., Convolvulus erubescens, Phalaris spp. and Lactuca serriola) were recorded on more than 70% of sites. The average number of species observed within crops after treatment and before harvest was less than 13. Species richness tended to be higher in winter pulse crops, cotton and in fallows, but overall was similar at the different sampling seasons (summer v. winter). Separate species assemblages associated with the Goondiwindi and Kingaroy regions were identified by correspondence analysis but these appeared to form no logical functional group. The species richness and density was generally low, demonstrating that farmers are managing weed populations effectively in both summer and winter cropping phases. Despite the apparent adoption of conservation tillage, an increase in opportunity cropping and the diversity of crops grown (13) there was no obvious effect of management practices on weed species richness or relative abundance. Avena spp. and Sonchus spp. were 2 of the most dominant weeds, particularly in central and southern latitudes of the region; Amaranthus spp. and Raphanus raphanistrum were the most abundant species in the northern part of the region. The ubiquity of these and other species shows that continued vigilance is required to suppress weeds as a management issue.