999 resultados para cpDNA trnT-trnF and trnS-trnG


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most evolutionary studies of oceanic islands have focused on the Pacific Ocean. There are very few examples from the Atlantic archipelagos, especially Macaronesia, despite their unusual combination of features, including a close proximity to the continent, a broad range of geological ages, and a biota linked to a source area that existed in the Mediterranean basin before the late Tertiary. A chloroplast DNA (cpDNA) restriction site analysis of Argyranthemum (Asteraceae: Anthemideae), the largest endemic genus of plants of any volcanic archipelago in the Atlantic Ocean, was performed to examine patterns of plant evolution in Macaronesia. cpDNA data indicated that Argyranthemum is a monophyletic group that has speciated recently. The cpDNA tree showed a weak correlation with the current sectional classification and insular distribution. Two major cpDNA lineages were identified. One was restricted to northern archipelagos--e.g., Madeira, Desertas, and Selvagens--and the second comprised taxa endemic to the southern archipelago--e.g., the Canary Islands. The two major radiations identified in the Canaries are correlated with distinct ecological habitats; one is restricted to ecological zones under the influence of the northeastern trade winds and the other to regions that are not affected by these winds. The patterns of phylogenetic relationships in Argyranthemum indicate that interisland colonization between similar ecological zones is the main mechanism for establishing founder populations. This phenomenon, combined with rapid radiation into distinct ecological zones and interspecific hybridization, is the primary explanation for species diversification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a method using variation in the chloroplast genome (cpDNA) to test whether oak stands of unknown provenance are of native and/or local origin. As an example, a sample of test oaks, of mostly unknown status in relation to nativeness and localness, were surveyed for cpDNA type. The sample comprised 126 selected trees, derived from 16 British seed stands, and 75 trees, selected for their superior phenotype (201 tree samples in total). To establish whether these two test groups are native and local, their cpDNA type was compared with that of material from known autochthonous origin (results of a previous study which examined variation in 1076 trees from 224 populations distributed across Great Britain). In the previous survey of autochthonous material, four cpDNA types were identified as native; thus if a test sample possessed a new haplotype then it could be classed as non-native. Every one of the 201 test samples possessed one of the four cpDNA types found within the autochthonous sample. Therefore none could be proven to be introduced and, on this basis, was considered likely to be native. The previous study of autochthonous material also found that cpDNA variation was highly structured geographically and, therefore, if the cpDNA type of the test sample did not match that of neighbouring autochthonous trees then it could be considered to be non-local. A high proportion of the seed stand group (44.2 per cent) and the phenotypically superior trees (58.7 per cent) possessed a cpDNA haplotype which matched that of the neighbouring autochthonous trees and, therefore, can be considered as local, or at least cannot be proven to be introduced. The remainder of the test sample could be divided into those which did not grow in an area of overall dominance (18.7 per cent of seed stand trees and 28 per cent of phenotypically superior) and those which failed to match the neighbouring autochthonous haplotype (37.1 per cent and 13.3 per cent, respectively). Most of the non-matching test samples were located within 50 km of an area dominated by a matching autochthonous haplotype (96.0 per cent and 93.5 per cent, respectively), and potentially indicates only local transfer. Whilst such genetic fingerprinting tests have proven useful for assessing the origin of stands of unknown provenance, there are potential limitations to using a marker from the chloroplast genome (mostly adaptively neutral) for classifying seed material into categories which have adaptive implications. These limitations are discussed, particularly within the context of selecting adaptively superior material for restocking native forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Mesoamerica, tropical dry forest is a highly threatened habitat, and species endemic to this environment are under extreme pressure. The tree species, Lonchocarpus costaricensis is endemic to the dry northwest of Costa Rica and southwest Nicaragua. It is a locally important species but, as land has been cleared for agriculture, populations have experienced considerable reduction and fragmentation. To assess current levels and distribution of genetic diversity in the species, a combination of chloroplast-specific (cpDNA) and whole genome DNA markers (amplified fragment length polymorphism, AFLP) were used to fingerprint 121 individual trees in 6 populations. Two cpDNA haplotypes were identified, distributed among populations such that populations at the extremes of the distribution showed lowest diversity. A large number (487) of AFLP markers were obtained and indicated that diversity levels were highest in the two coastal populations (Cobano, Matapalo, H = 0.23, 0.28 respectively). Population differentiation was low overall, F-ST = 0.12, although Matapalo was strongly differentiated from all other populations (F-ST = 0.16-0.22), apart from Cobano (F., = 0.11). Spatial genetic structure was present in both datasets at different scales: cpDNA was structured at a range-wide distribution scale, whilst AFLP data revealed genetic neighbourhoods on a population scale. In general, the habitat degradation of recent times appears not to have yet impacted diversity levels in mature populations. However, although no data on seed or saplings were collected, it seems likely that reproductive mechanisms in the species will have been affected by land clearance. It is recommended that efforts should be made to conserve the extant genetic resource base and further research undertaken to investigate diversity levels in the progeny generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valuable genetic variation for bean breeding programs is held within the common bean secondary gene pool which consists of Phaseolus albescens, P. coccineus, P. costaricensis, and P. dumosus. However, the use of close relatives for bean improvement is limited due to the lack of knowledge about genetic variation and genetic plasticity of many of these species. Characterisation and analysis of the genetic diversity is necessary among beans' wild relatives; in addition, conflicting phylogenies and relationships need to be understood and a hypothesis of a hybrid origin of P. dumosus needs to be tested. This thesis research was orientated to generate information about the patterns of relationships among the common bean secondary gene pool, with particular focus on the species Phaseolus dumosus. This species displays a set of characteristics of agronomic interest, not only for the direct improvement of common bean but also as a source of valuable genes for adaptation to climate change. Here I undertake the first comprehensive study of the genetic diversity of P. dumosus as ascertained from both nuclear and chloroplast genome markers. A germplasm collection of the ancestral forms of P. dumosus together with wild, landrace and cultivar representatives of all other species of the common bean secondary gene pool, were used to analyse genetic diversity, phylogenetic relationships and structure of P. dumosus. Data on molecular variation was generated from sequences of cpDNA loci accD-psaI spacer, trnT-trnL spacer, trnL intron and rps14-psaB spacer and from the nrDNA the ITS region. A whole genome DArT array was developed and used for the genotyping of P. dumosus and its closes relatives. 4208 polymorphic markers were generated in the DArT array and from those, 742 markers presented a call rate >95% and zero discordance. DArT markers revealed a moderate genetic polymorphism among P. dumosus samples (13% of polymorphic loci), while P. coccineus presented the highest level of polymorphism (88% of polymorphic loci). At the cpDNA one ancestral haplotype was detected among all samples of all species in the secondary genepool. The ITS region of P. dumosus revealed high homogeneity and polymorphism bias to P. coccineus genome. Phylogenetic reconstructions made with Maximum likelihood and Bayesian methods confirmed previously reported discrepancies among the nuclear and chloroplast genomes of P. dumosus. The outline of relationships by hybridization networks displayed a considerable number of interactions within and between species. This research provides compelling evidence that P. dumosus arose from hybridisation between P. vulgaris and P. coccineus and confirms that P. costaricensis has likely been involved in the genesis or backcrossing events (or both) in the history of P. dumosus. The classification of the specie P. persistentus was analysed based on cpDNA and ITS sequences, the results found this species to be highly related to P. vulgaris but not too similar to P. leptostachyus as previously proposed. This research demonstrates that wild types of the secondary genepool carry a significant genetic variation which makes this a valuable genetic resource for common bean improvement. The DArT array generated in this research is a valuable resource for breeding programs since it has the potential to be used in several approaches including genotyping, discovery of novel traits, mapping and marker-trait associations. Efforts should be made to search for potential populations of P. persistentus and to increase the collection of new populations of P. dumosus, P. albescens and P. costaricensis that may provide valuable traits for introgression into common bean and other Phaseolus crops.