890 resultados para cortical complexity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop. Specific alpha absolute power changes were measured in quantitative electroencephalography (qEEG). Our hypothesis is that during the preparation of motoraction (i.e.. 2 s before the ball drops) integration occurs among the left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. We contend that in right-handers, the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy right handed subjects (13 men and 10 women), with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness. The experiment consisted of a task of catching balls with the right hard in free drop. The three-way ANOVA analysis demonstrated all interaction between moment and position in left-medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.05). Summarizing, the experimental task enabled the observation of integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine abnormal patterns of frontal cortical-subcortical activity in response to emotional stimuli in euthymic individuals with bipolar disorder type I in order to identify trait-like, pathophysiologic mechanisms of the disorder. We examined potential confounding effects of total psychotropic medication load and illness variables upon neural abnormalities. We analyzed neural activity in 19 euthymic bipolar and 24 healthy individuals to mild and intense happy, fearful and neutral faces. Relative to healthy individuals, bipolar subjects had significantly increased left striatal activity in response to mild happy faces (p < 0.05, corrected), decreased right dorsolateral prefrontal cortical (DLPFC) activity in response to neutral, mild and intense happy faces, and decreased left DLPFC activity in response to neutral, mild and intense fearful faces (p < 0.05, corrected). Bipolar and healthy individuals did not differ in amygdala activity in response to either emotion. In bipolar individuals, there was no significant association between medication load and abnormal activity in these regions, but a negative relationship between age of illness onset and amygdala activity in response to mild fearful faces (p = 0.007). Relative to those without comorbidities, bipolar individuals with comorbidities showed a trend increase in left striatal activity in response to mild happy faces. Abnormally increased striatal activity in response to potentially rewarding stimuli and decreased DLPFC activity in response to other emotionally salient stimuli may underlie mood instabilities in euthymic bipolar individuals, and are more apparent in those with comorbid diagnoses. No relationship between medication load and abnormal neural activity in bipolar individuals suggests that our findings may reflect pathophysiologic mechanisms of the illness rather than medication confounds. Future studies should examine whether this pattern of abnormal neural activity could distinguish bipolar from unipolar depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG) alpha absolute power changes. Our hypothesis is that during the preparation of motor action (i.e., 2 s before ball`s drop) occurred integration among left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. This hypothesis supports a lateralization of motor function. Although we contend that in right-handers the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy subjects (13 male and 10 female), right handed, with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness, right handed, and do not make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position in left medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.001). Summarizing, through experimental task employed, it was possible to observe integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation. In this way, it established an absolute predominance of this mechanism under the left hemisphere. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary findings suggest that transcranial direct current stimulation (tDCS) can have antidepressant effects. We sought to test this further in a parallel-group, double-blind clinical trial with 40 patients with major depression, medication-free randomized into three groups of treatment: anodal tDCS of the left dorsolateral prefrontal cortex (active group-`DLPFC`); anodal tDCS of the occipital cortex (active control group-`occipital`) and sham tDCS (placebo control group-`sham`). tDCS was applied for 10 sessions during a 2-wk period. Mood was evaluated by a blinded rater using the Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). The treatment was well tolerated with minimal side-effects that were distributed equally across all treatment groups. We found significantly larger reductions in depression scores after DLPFC tDCS [HDRS reduction of 40.4 % (+/-25.8%)] compared to occipital [HDRS reduction of 21.3 % ( +/-12.9%)] and sham tDCS [HDRS reduction of 10.4 % (+/-36.6%)]. The beneficial effects of tDCS in the DLPFC group persisted for 1 month after the end of treatment. Our findings support further investigation on the effects of this novel potential therapeutic approach - tDCS - for the treatment of major depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult mate and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS- condition, mate and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, mate and female WARs displayed, respectively, higher and tower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the influence of oral contraceptives (OCs) containing 20 mu mu g ethinylestradiol (EE) and 150 mu mu g gestodene (GEST) on the autonomic modulation of heart rate (HR) in women. Methods One-hundred and fifty-five women aged 24 +/-+/- 2 years were divided into four groups according to their physical activity and the use or not of an OC: active-OC, active-non-OC (NOC), sedentary-OC, and sedentary-NOC. The heart rate was registered in real time based on the electrocardiogram signal for 15 minutes, in the supine-position. The heart rate variability (HRV) was analysed using Shannon`s entropy (SE), conditional entropy (complexity index [CInd] and normalised CInd [NCI]), and symbolic analysis (0V%, 1V%, 2LV%, and 2ULV%). For statistical analysis the Kruskal-Wallis test with Dunn post hoc and the Wilcoxon test (p < 0.05 was considered significant) were applied. Results Treatment with this COC caused no significant changes in SE, CInd, NCI, or symbolic analysis in either active or sedentary groups. Active groups presented higher values for SE and 2ULV%, and lower values for 0V% when compared to sedentary groups (p < 0.05). Conclusion HRV patterns differed depending on life style; the non-linear method applied was highly reliable for identifying these changes. The use of OCs containing 20 mu mu g EE and 150 mu mu g GEST does not influence HR autonomic modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the somatotopic representation in the somatosensory thalamus of a megachiropteran bat. Using standard microelectrode mapping techniques, representational maps were generated for the ventrobasal (Vb) and posterior (Po) thalamic complexes of the Grey-headed flying fox. Anatomical tracing from neocortical injections provided additional data confirming the somatotopy found physiologically. A full representation of the body surface innervated by the trigeminal and spinal nerves was found. However, in contrast with other mammals, the representations of the forelimb and adjacent thoracic trunk within the thalamus were inverted. This means that the distal portions of the wing membrane and the tips of the digits were represented dorsally in Vb, and the thoracic trunk was represented ventrally In Po the digit tips were represented in the ventral most portion and the thoracic trunk in the dorsal portion of the nucleus. These results are discussed in relation to similarities of megachiropteran somatosensory thalamic nuclei to those of other mammalian species and in relation to the formation of thalamic somatotopic maps and fiber sorting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Around 98% of all transcriptional output in humans is noncoding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.