999 resultados para corrosion monitoring


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A salt weathering simulation using a mix of sodium chloride (5%) and magnesium sulphate (5%) in a salt corrosion cabinet and five granular limestones is described. Progressive surface loss from vertical exposed faces was mapped using a high resolution (sub-millimetre) object scanner (Konica Minolta Vi9i). Patterns of loss are related to surface porosity/permeability measurements obtained using a hand-held gas permeameter. Introduction of this spatial dimension into damage assessment is seen as essential for understanding the initial conditions that allow surface loss to be triggered, and changes in surface characteristics as weathering proceeds which dictate subsequent decay in space and time. Preliminary observations suggest that scanning at this high resolution is particularly valuable in quantifying very subtle trends and distortions that are pre-cursors to material loss, including surface swelling and pore filling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) was used to study and evaluate commercial batch treatment inhibitors which are used for protecting oil wells, gas wells, and pipelines from CO2 corrosion, focusing on the evaluation of inhibitor film persistency. It was found that theformation and deterioration of batch treatment inhibitor films were accompanied by typical impedance spectral changes. During the formation of inhibitor films, electrode impedance showed a rapid increase and the Bode phase angle plots also showed a sudden change. Thus, the formation of inhibitor film was a very fast process. During the deterioration of inhibitor films, electrode impedance showed a gradual decrease and the Bode phase angle plots showed changes which characterised the three stages of the inhibitor film deterioration process. The relationships between EIS and corrosion rate are discussed, including comparisons with weight loss measurements. Based on the experimental findings in the present work, a method is suggested for estimating the persistency of inhibitor films by monitoring the characteristic changes in the Bode phase angle plots and by measuring electrochemical charge transfer resistance at the second and third stages of the inhibitor film deterioration process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical noise analysis (ENA) was used to monitor continuously the formation and deterioration processes of a commercial batch treatment inhibitor film of the type used for protecting against CO2 corrosion in oilfields; ENA was shown to be able to follow effectively the formation and deterioration processes of batch treatment inhibitor films. As an inhibitor film formed, the current noise amplitude decreased rapidly and the noise resistance Rn, which is deducible from the voltage and current noise records, was found to increase sharply. Conversely, as the inhibitor film deteriorated, the current noise amplitude increased rapidly and Rn decreased rapidly. In the corrosion inhibition system studied, the noise resistance was confirmed to be similar to the linear polarisation resistance. Based on the calculation of Rn on a continuous basis, a technique is proposed to study fast corrosion processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New progresses have been made during recent years in the application of the wire beam electrode (WBE, a coupled multielectrode array) for studying electroplating of metallic coatings, for monitoring the electrodeposition of polymer coatings, and for evaluating the performance of anti-corrosion coatings. The WBE allows localized electrode processes to occur over different locations of its surface under external anodic or cathodic polarization and permits monitoring of nonuniform electrodeposition processes. Several typical experiments are presented in this paper. One sample experiment is the characterization of nonuniform electroplating of nickel coating, which was achieved by mapping the distributions of currents over a WBE surface that was under cathodic polarization. Various characteristic current distribution patterns, which indicate different electrodeposition mechanisms or low covering-power, have been observed. These patterns were found to correlate with the effects of several affecting factors such as electrolyte concentration, temperature and agitation flow. Another sample experiment is the investigation of nonuniform anodic electrodeposition of polyaniline (PANI) coatings and the understanding of their anti-corrosion performance and mechanisms. Anodic polarization currents were measured from various locations over the WBE surface in order to produce anodic polarization current maps under PANI deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking. an oraganic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants. Toyota long, life coolant appeared to be the most promising one. In addition. it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder. brass. steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four corrosion inhibitors namely sodium nitrite, sodium monofluorophosphate, ethanolamine and an alkanolamine-based mixture were studied by immersing mild steel bars for 42 days in model electrolytes of varied pH and chloride concentration which were intended to simulate the pore solution phase present within carbonated and/or chloride-contaminated concrete. Site trials were carried out on sodium monofluorophosphate and the alkanolamine-based inhibitor to study their depth of penetration into concrete. The influence of various carbonating atmospheres on the pore solution chemistry and microstructure of hydrated cement paste was investigated. Physical realkalisation of carbonated cement paste and a calcium nitrite-based corrosion rehabilitation system for chloride-contaminated cement paste were investigated by monitoring ionic transport within the pore solution phase of laboratory specimens. The main findings were as follows: 1,Sodium nitrite, sodium monofluorophosphate, ethanolamine and the alkanolamine-based mixture all behaved as passivating anodic inhibitors of steel corrosion in air-saturated aqueous solutions of varied pH and chloride concentration. 2,Sodium monofluorophosphate failed to penetrate significantly into partially carbonated site concrete when applied as recommended by the supplier. Phosphate and fluoride penetrated 5mm into partially carbonated site concrete treated with sodium monofluorophosphate. 3,The ethanolamine component of the alkanolamine-based inhibitor was found to have penetrated significant depths into partially carbonated site concrete. 4,Carbonating hydrated cement paste over saturated solutions of sodium nitrite resulted in significant concentrations of nitrite in the pore solution of the carbonated paste. Saturated solutions of sodium chloride, ammonium nitrate, magnesium nitrate and sodium dichromate were investigated and identified as alternatives for controlling the relative humidity of the carbonating environment. 5,Hardened carbonated cement paste can by physically realkalised to a limited extent due to the diffusion of hydroxyl ions under saturated conditions. A substantial proportion of the hydroxyl ions that diffused into the carbonated cement paste however, became bound into the cement matrix. Hydroxyl ion concentrations remained below 5mmol/l within the pore solution of the realkalised cement paste. 6, Nitrite ions penetrated significant distances by diffusion within the pore solution of saturated uncarbonated hydrated cement paste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemically integrated multi-electrode array has been used for monitoring and visualizing the cathodic disbondment of
defective coatings by measuring local electrochemical impedance. Compared with the conventional electrochemical impedance and
local current measurement approaches, this new approach significantly enhances the sensitivity of detecting the propagation of
coating disbondment by eliminating the effects of the dominating low impedance regions, such as those that arise at coating defects,
and thus increases the visibility of higher impedance regions deep in the disbonded coating. Furthermore, it facilitates the probing
of electrode processes and mechanisms in selected local electrode regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of energy harvesting materials for large infrastructure is a promising and growing field. In this regard, the use of such harvesters for the purpose of structural health monitoring of bridges has been proposed in recent times as one of the feasible options since the deployment of them can remove the necessity of an external power source. This paper addresses the performance issue of such monitors over the life-cycle of a bridge as it deteriorates and the live load on the structure increases. In this regard, a Lead Zirconate Titanate (PZT) material is considered as the energy harvesting material and a comparison is carried out over the operational life of a reinforced concrete bridge. The evolution of annual average daily traffic (AADT) is taken into consideration, as is the degradation of the structure over time, due to the effects of corrosion. Evolution of such harvested energy is estimated over the life-cycle of the bridge and the sensitivity of harvested energy is investigated for varying rates of degradation and changes in AADT. The study allows for designing and understanding the potential of energy harvesters as a health monitor for bridges. This paper also illustrates how the natural growth of traffic on a bridge over time can accentuate the identification of damage, which is desirable for an ageing structure. The paper also assesses the impact and effects of deployment of harvesters in a bridge as a part of its design process, considering performance over the entire life-cycle versus a deployment at a certain age of the structure.