940 resultados para correlation coefficient analysis
Resumo:
Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.
Resumo:
With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^
Resumo:
Background and Objective. Ever since the human development index was published in 1990 by the United Nations Development Programme (UNDP), many researchers started searching and corporative studying for more effective methods to measure the human development. Published in 1999, Lai’s “Temporal analysis of human development indicators: principal component approach” provided a valuable statistical way on human developmental analysis. This study presented in the thesis is the extension of Lai’s 1999 research. ^ Methods. I used the weighted principal component method on the human development indicators to measure and analyze the progress of human development in about 180 countries around the world from the year 1999 to 2010. The association of the main principal component obtained from the study and the human development index reported by the UNDP was estimated by the Spearman’s rank correlation coefficient. The main principal component was then further applied to quantify the temporal changes of the human development of selected countries by the proposed Z-test. ^ Results. The weighted means of all three human development indicators, health, knowledge, and standard of living, were increased from 1999 to 2010. The weighted standard deviation for GDP per capita was also increased across years indicated the rising inequality of standard of living among countries. The ranking of low development countries by the main principal component (MPC) is very similar to that by the human development index (HDI). Considerable discrepancy between MPC and HDI ranking was found among high development countries with high GDP per capita shifted to higher ranks. The Spearman’s rank correlation coefficient between the main principal component and the human development index were all around 0.99. All the above results were very close to outcomes in Lai’s 1999 report. The Z test result on temporal analysis of main principal components from 1999 to 2010 on Qatar was statistically significant, but not on other selected countries, such as Brazil, Russia, India, China, and U.S.A.^ Conclusion. To synthesize the multi-dimensional measurement of human development into a single index, the weighted principal component method provides a good model by using the statistical tool on a comprehensive ranking and measurement. Since the weighted main principle component index is more objective because of using population of nations as weight, more effective when the analysis is across time and space, and more flexible when the countries reported to the system has been changed year after year. Thus, in conclusion, the index generated by using weighted main principle component has some advantage over the human development index created in UNDP reports.^
Resumo:
An interim analysis is usually applied in later phase II or phase III trials to find convincing evidence of a significant treatment difference that may lead to trial termination at an earlier point than planned at the beginning. This can result in the saving of patient resources and shortening of drug development and approval time. In addition, ethics and economics are also the reasons to stop a trial earlier. In clinical trials of eyes, ears, knees, arms, kidneys, lungs, and other clustered treatments, data may include distribution-free random variables with matched and unmatched subjects in one study. It is important to properly include both subjects in the interim and the final analyses so that the maximum efficiency of statistical and clinical inferences can be obtained at different stages of the trials. So far, no publication has applied a statistical method for distribution-free data with matched and unmatched subjects in the interim analysis of clinical trials. In this simulation study, the hybrid statistic was used to estimate the empirical powers and the empirical type I errors among the simulated datasets with different sample sizes, different effect sizes, different correlation coefficients for matched pairs, and different data distributions, respectively, in the interim and final analysis with 4 different group sequential methods. Empirical powers and empirical type I errors were also compared to those estimated by using the meta-analysis t-test among the same simulated datasets. Results from this simulation study show that, compared to the meta-analysis t-test commonly used for data with normally distributed observations, the hybrid statistic has a greater power for data observed from normally, log-normally, and multinomially distributed random variables with matched and unmatched subjects and with outliers. Powers rose with the increase in sample size, effect size, and correlation coefficient for the matched pairs. In addition, lower type I errors were observed estimated by using the hybrid statistic, which indicates that this test is also conservative for data with outliers in the interim analysis of clinical trials.^
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
Purpose: Breast cancer is the most frequently diagnosed cancer among women worldwide. While undergoing chemotherapy treatment for breast cancer, patients often report experiencing "chemobrain." Previous literature reports correlations between psychological distress and these perceived cognitive problems. The aim of the present study was to examine the strength of the association between affective disturbance and subjective cognitive dysfunction.Methods: This study included a meta-analysis of the literature reporting a correlation between mood and subjective cognitive dysfunction. Eight studies with 1344 breast cancer patients treated with chemotherapy were selected based on stringent study inclusion criteria. Studies reporting a correlation coefficient between mood and subjective cognitive dysfunction were included.Results: In these data, there was no significant correlation between affective disturbance and subjective cognitive dysfunction. A random effects model yielded an overall weighted mean effect size of 0.12.Conclusion: Although this meta-analysis did not confirm the correlation between mood and subjective cognitive dysfunction, there was a clear association between these factors in the original disaggregated analyses, and they are clearly impactful from the time of diagnosis through long-term after care. The clinical implications of the present study and future directions for research are discussed.
Resumo:
Purpose: To evaluate the correlation of the mean curvature and shape factors of both corneal surfaces for different corneal diameters measured with the Scheimpflug photography–based system in keratoconus eyes. Methods: A total of 61 keratoconus eyes of 61 subjects, aged 14 to 64 years, were included in this study. All eyes received a comprehensive ophthalmologic examination including anterior segment and corneal analysis with the Sirius system (CSO): anterior and posterior mean corneal radius for 3, 5, and 7 mm (aKM, pKM), anterior and posterior mean shape factor for 4.5 and 8 mm (ap, pp), central and minimal corneal thickness, and anterior chamber depth. Results: Mean aKM/pKM ratio around 1.20 (range, 0.95–1.48) was found for all corneal diameters (P = 0.24). Weak but significant correlations of this ratio with pachymetric parameters were found (r between −0.28 and −0.34, P < 0.04). The correlation coefficient between aKM and pKM was ≥0.92 for all corneal diameters. A strong and significant correlation was also found between ap and pp (r ≥ 0.86, P < 0.01). The multiple regression analysis revealed that central pKM was significantly correlated with aKM, central corneal thickness, anterior chamber depth, and spherical equivalent (R2 ≥ 0.88, P < 0.01) and that 8 mm pp was significantly correlated with 8 mm ap and age (R2 = 0.89, P < 0.01). Conclusions: Central posterior corneal curvature and shape factor in the keratoconus eye can be consistently predicted from the anterior corneal curvature and shape factor, respectively, in combination with other anatomical and ocular parameters.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
If in a correlation test, one or both variables are small whole numbers, scores based on a limited scale, or percentages, a non-parametric correlation coefficient should be considered as an alternative to Pearson’s ‘r’. Kendall’s t and Spearman’s rs are similar tests but the former should be considered if the analysis is to be extended to include partial correlations. If the data contain many tied values, then gamma should be considered as a suitable test.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
The relationship between sleep apnoea–hypopnoea syndrome (SAHS) severity and the regularity of nocturnal oxygen saturation (SaO2) recordings was analysed. Three different methods were proposed to quantify regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 subjects suspected of suffering from SAHS took part in the study. They were randomly divided into a training set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson correlation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements from oximetry data exhibited a linear dependence on the apnoea–hypopnoea index, as shown by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals.
Resumo:
Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.
Resumo:
Suppose two or more variables are jointly normally distributed. If there is a common relationship between these variables it would be very important to quantify this relationship by a parameter called the correlation coefficient which measures its strength, and the use of it can develop an equation for predicting, and ultimately draw testable conclusion about the parent population. This research focused on the correlation coefficient ρ for the bivariate and trivariate normal distribution when equal variances and equal covariances are considered. Particularly, we derived the maximum Likelihood Estimators (MLE) of the distribution parameters assuming all of them are unknown, and we studied the properties and asymptotic distribution of . Showing this asymptotic normality, we were able to construct confidence intervals of the correlation coefficient ρ and test hypothesis about ρ. With a series of simulations, the performance of our new estimators were studied and were compared with those estimators that already exist in the literature. The results indicated that the MLE has a better or similar performance than the others.
Resumo:
Following the methodology of Ferreira and Dionísio (2016), the objective of this paper is to analyze the behavior stock markets in the G7 countries and find which of those countries is the first to reach levels of long-range correlations that are not significant. We carry out this analysis using detrended cross-correlation analysis and its correlation coefficient, to check for the existence of long-range dependence in time series. The existence of long-range dependence could be understood as a possibility of EMH violation. This analysis remains interesting because studies are not conclusive about the existence or not of long memory in stock return rates.
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.