667 resultados para cornea opacity
Resumo:
Dimensional modeling, GT-Power in particular, has been used for two related purposes-to quantify and understand the inaccuracies of transient engine flow estimates that cause transient smoke spikes and to improve empirical models of opacity or particulate matter used for engine calibration. It has been proposed by dimensional modeling that exhaust gas recirculation flow rate was significantly underestimated and volumetric efficiency was overestimated by the electronic control module during the turbocharger lag period of an electronically controlled heavy duty diesel engine. Factoring in cylinder-to-cylinder variation, it has been shown that the electronic control module estimated fuel-Oxygen ratio was lower than actual by up to 35% during the turbocharger lag period but within 2% of actual elsewhere, thus hindering fuel-Oxygen ratio limit-based smoke control. The dimensional modeling of transient flow was enabled with a new method of simulating transient data in which the manifold pressures and exhaust gas recirculation system flow resistance, characterized as a function of exhaust gas recirculation valve position at each measured transient data point, were replicated by quasi-static or transient simulation to predict engine flows. Dimensional modeling was also used to transform the engine operating parameter model input space to a more fundamental lower dimensional space so that a nearest neighbor approach could be used to predict smoke emissions. This new approach, intended for engine calibration and control modeling, was termed the "nonparametric reduced dimensionality" approach. It was used to predict federal test procedure cumulative particulate matter within 7% of measured value, based solely on steady-state training data. Very little correlation between the model inputs in the transformed space was observed as compared to the engine operating parameter space. This more uniform, smaller, shrunken model input space might explain how the nonparametric reduced dimensionality approach model could successfully predict federal test procedure emissions when roughly 40% of all transient points were classified as outliers as per the steady-state training data.
Resumo:
BACKGROUND: Several conversion tables and formulas have been suggested to correct applanation intraocular pressure (IOP) for central corneal thickness (CCT). CCT is also thought to represent an independent glaucoma risk factor. In an attempt to integrate IOP and CCT into a unified risk factor and avoid uncertain correction for tonometric inaccuracy, a new pressure-to-cornea index (PCI) is proposed. METHODS: PCI (IOP/CCT(3)) was defined as the ratio between untreated IOP and CCT(3) in mm (ultrasound pachymetry). PCI distribution in 220 normal controls, 53 patients with normal-tension glaucoma (NTG), 76 with ocular hypertension (OHT), and 89 with primary open-angle glaucoma (POAG) was investigated. PCI's ability to discriminate between glaucoma (NTG+POAG) and non-glaucoma (controls+OHT) was compared with that of three published formulae for correcting IOP for CCT. Receiver operating characteristic (ROC) curves were built. RESULTS: Mean PCI values were: Controls 92.0 (SD 24.8), NTG 129.1 (SD 25.8), OHT 134.0 (SD 26.5), POAG 173.6 (SD 40.9). To minimise IOP bias, eyes within the same 2 mm Hg range between 16 and 29 mm Hg (16-17, 18-19, etc) were separately compared: control and NTG eyes as well as OHT and POAG eyes differed significantly. PCI demonstrated a larger area under the ROC curve (AUC) and significantly higher sensitivity at fixed 80% and 90% specificities compared with each of the correction formulas; optimum PCI cut-off value 133.8. CONCLUSIONS: A PCI range of 120-140 is proposed as the upper limit of "normality", 120 being the cut-off value for eyes with untreated pressures
Resumo:
The planning of refractive surgical interventions is a challenging task. Numerical modeling has been proposed as a solution to support surgical intervention and predict the visual acuity, but validation on patient specific intervention is missing. The purpose of this study was to validate the numerical predictions of the post-operative corneal topography induced by the incisions required for cataract surgery. The corneal topography of 13 patients was assessed preoperatively and postoperatively (1-day and 30-day follow-up) with a Pentacam tomography device. The preoperatively acquired geometric corneal topography – anterior, posterior and pachymetry data – was used to build patient-specific finite element models. For each patient, the effects of the cataract incisions were simulated numerically and the resulting corneal surfaces were compared to the clinical postoperative measurements at one day and at 30-days follow up. Results showed that the model was able to reproduce experimental measurements with an error on the surgically induced sphere of 0.38D one day postoperatively and 0.19D 30 days postoperatively. The standard deviation of the surgically induced cylinder was 0.54D at the first postoperative day and 0.38D 30 days postoperatively. The prediction errors in surface elevation and curvature were below the topography measurement device accuracy of ±5μm and ±0.25D after the 30-day follow-up. The results showed that finite element simulations of corneal biomechanics are able to predict post cataract surgery within topography measurement device accuracy. We can conclude that the numerical simulation can become a valuable tool to plan corneal incisions in cataract surgery and other ophthalmosurgical procedures in order to optimize patients' refractive outcome and visual function.
Resumo:
Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.
Resumo:
Converging evidences from eye movement experiments indicate that linguistic contexts influence reading strategies. However, the question of whether different linguistic contexts modulate eye movements during reading in the same bilingual individuals remains unresolved. We examined reading strategies in a transparent (German) and an opaque (French) language of early, highly proficient French–German bilinguals: participants read aloud isolated French and German words and pseudo-words while the First Fixation Location (FFL), its duration and latency were measured. Since transparent linguistic contexts and pseudo-words would favour a direct grapheme/phoneme conversion, the reading strategy should be more local for German than for French words (FFL closer to the beginning) and no difference is expected in pseudo-words’ FFL between contexts. Our results confirm these hypotheses, providing the first evidence that the same individuals engage different reading strategy depending on language opacity, suggesting that a given brain process can be modulated by a given context.
Resumo:
von J. Nußbaum
Resumo:
The cornea of the human eye can develop deposits of lipids in the periphery known as corneal arcus. [2, 10] For over a century, these deposits have been of interest as possible indicators of the accumulation of lipids in arterial walls of the heart and body with implications for heart disease. [2, 10, 11, 29] Heart disease is currently the leading cause of death in this country. [5, 29] There have been several publications suggesting an association between the development of atherosclerotic lesions and corneal arcus. [2, 12, 29] Investigators have differed in their interpretation of the relevance of corneal arcus to coronary heart disease or cardiovascular disease. However, there is widespread consensus that the presence of corneal arcus in patients under the age of 50 should prompt physicians to further investigate for dyslipidemia or heart disease. [2, 3, 6, 8, 19] Earlier studies have often suffered from difficulty in determining the presence or severity of atherosclerosis and from inconsistencies in evaluating corneal arcus. This study involves the review of mortality data, medical and social history and standardized slit lamp examination of corneal tissue donors to evaluate the prevalence of corneal arcus in relation to death by CHD or CVD. The prevalence of arcus, odds ratio, and logistic regression was utilized for statistical analysis.^