987 resultados para control-release


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary : The hypothalamus represents less than 1 % of the total volume of the brain tissue, yet it plays a crucial role in endocrine regulations. Puberty is defined as a process leading to physical, sexual and psychosocial maturation. The hypothalamus is central to this process, via the activation of GnRH neurons. Pulsatile GnRH secretion, minimal during childhood, increases with the onset of puberty. The primary function of GnRH is to regulate the growth, development and function of testes in boys and ovaries in girls, by stimulating the pituitary gland secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several factors contribute to the timing of puberty, including sex and ethnicity, genetics, dietary intake and energy expenditure. Kisspeptins constitute a family of small peptides arising from the proteolytic cleavage of metastin, a peptide with 54 amino acids initially purified from human placenta. These kisspeptins were the subject of much attention following their discovery because of their antimetastatic properties, but it was more recently that their determining role in the reproductive function was demonstrated. It was shown that kisspeptins are ligands of a receptor, GPR54, whose natural inactivating mutation in humans, or knockout in the mouse, lead to infertility. GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH release and GnRH neuron firing activity, but the neurobiological mechanisms for these actions are unknown. Gprotein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting that both direct and indirect effects are possible. In the first part of my thesis, we investigated a possible connection between the acceleration of sexual development induced by leptin and hypothalamic metastin neurons. However, the data generated by our preliminary experiments confirmed that the commercially available antibodies are non-specific. This finding constituted a major drawback for our studies, which relied heavily upon the neuroanatomical study of the hypothalamic metastinergic pathways to elucidate their sensitivity to exogenous leptin. Therefore, we decided to postpone any further in vivo experiment until a better antibody becomes available, and focused on in vitro studies to better understand the mechanisms of action of kisspeptins in the modulation of the activity of GnRH neurons. We used two GnRH-expressing neuronal cell lines to investigate the cellular and molecular mechanisms of action of metastin in GnRH neurons. We demonstrated that kisspeptin induces an early activation of the MAP kinase intracellular signaling pathway in both cell lines, whereas the SAP/JNK or the Akt pathways were unaffected. Moreover, we found an increase in GnRH mRNA levels after 6h of metastin stimulation. Thus, we can conclude that kisspeptin regulates GnRH neurons both at the secretion and the gene expression levels. The MAPK pathway is the major pathway activated by metastin in GnRH expressing neurons. Taken together, these data provide the first mechanism of action of kisspeptin on GnRH neurons. Résumé : L'hypothalamus est une zone située au centre du cerveau, dont il représente moins de 1 du volume total. La puberté est la période de transition entre l'enfance et l'age adulte, qui s'accompagne de transformations somatiques, psychologiques, métaboliques et hormonales conduisant à la possibilité de procréer. La fonction principale de la GnRH est la régulation de la croissance, du développement et de la fonction des testicules chez les hommes, et des ovaires chez les femmes en stimulant la sécrétion de l'hormone lutéinisante (LH) et de l'hormone folliculostimulante (FSH) par la glande hypophysaire. Plusieurs facteurs contribuent au déclanchement de la puberté, y compris le sexe et l'appartenance ethnique, la génétique, l'apport alimentaire et la dépense énergétique. Les Kisspeptines constituent une famille de peptides résultant de la dissociation proteolytique de la métastine, un peptide de 54 acides aminés initialement purifié à partir de placenta humain. Ces kisspeptines ont fait l'objet de beaucoup d'attention à la suite de leur découverte en raison de leurs propriétés anti-metastatiques, et c'est plus récemment que leur rôle déterminant dans la fonction reproductive a été démontré. Les kisspeptines sont des ligands du récepteur GPR54, dont la mutation inactivatrice chez l'homme, ou le knockout chez la souris, conduisent à l'infertilité par hypogonadisme hypogonadotrope. Les neurones à GnRH jouent un rôle central dans le règlement des fonctions reproductrices et la kisspeptine stimule l'activité des neurones à GnRH et la libération de GnRH par ces neurones. Toutefois, les mécanismes neurobiologiques de ces actions ne sont pas connus. Dans la première partie de ma thèse, nous avons étudié le lien potentiel entre l'accélération du développement sexuel induite par la leptine et les neurones hypothalamiques à metastine. Les données générées dans cette première série d'expériences ont malheureusement confirmé que les anticorps anti-metastine disponibles dans le commerce sont aspécifiques. Ceci a constitué un inconvénient majeur pour nos études, qui devaient fortement s'appuyer sur l' étude neuroanatomique des neurones hypothalamiques à metastine pour évaluer leur sensibilité à la leptine exogène. Nous avons donc décidé de focaliser nos travaux sur une étude in vitro des mécanismes d'action de la kisspeptine pour moduler l'activité des neurones à GnRH. Nous avons utilisé deux lignées de cellules neuronales exprimant la GnRH pour étudier les mécanismes d'action cellulaires et moléculaires de la metastine dans des neurones. Nous avons ainsi pu démontrer que la kisspeptine induit une activation précoce de la voie f de signalisation de la MAP kinase dans les deux lignées cellulaires, alors que nous n'avons observé aucune activation de la voie de signalisation de la P13 Kinase et de la SAP/JNK. Nous avons en outre démontré une augmentation de l'expression de la GnRH par la stimulation avec la Kisspeptine. L'ensemble de ces données contribue à élucider le mécanisme d'action avec lequel la kisspeptine agit dans les neurones à GnRH, en démontrant un effet sur l'expression génique de la GnRH. Nous pouvons également conclure que la voie de la MAPK est la voie principale activée par la metastine dans les neurones exprimant la GnRH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After a large scale field trial performed in central Brazil envisaging the control of Chagas' disease vectors in an endemic area colonized by Triatoma infestans and T. sordida the cost-effectiveness analysis for each insecticide/formulation was performed. It considered the operational costs and the prices of insecticides and formulations, related to the activity and persistence of each one. The end point was considered to be less than 90% of domicilliary unitis (house + annexes) free of infestation. The results showed good cost-effectiveness for a slow-release emulsifiable suspension (SRES) based on PVA and containing malathion as active ingredient, as well as for the pyrethroids tested in this assay-cyfluthrin, cypermethrin, deltamethrin and permethrin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rab37 belongs to a subclass of Rab GTPases regulating exocytosis, including also Rab3a and Rab27a. Proteomic studies indicate that Rab37 is associated with insulin-containing large dense core granules of pancreatic β-cells. In agreement with these observations, we detected Rab37 in extracts of β-cell lines and human pancreatic islets and confirmed by confocal microscopy the localization of the GTPase on insulin-containing secretory granules. We found that, as is the case for Rab3a and Rab27a, reduction of Rab37 levels by RNA interference leads to impairment in glucose-induced insulin secretion and to a decrease in the number of granules in close apposition to the plasma membrane. Pull-down experiments revealed that, despite similar functional effects, Rab37 does not interact with known Rab3a or Rab27a effectors and is likely to operate through a different mechanism. Exposure of insulin-secreting cells to proinflammatory cytokines, fatty acids or oxidized low-density lipoproteins, mimicking physiopathological conditions that favor the development of diabetes, resulted in a decrease in Rab37 expression. Our data identify Rab37 as an additional component of the machinery governing exocytosis of β-cells and suggest that impaired expression of this GTPase may contribute to defective insulin release in pre-diabetic and diabetic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reviewed the control of transmission of leishmaniasis regarding chemotherapy, reservoirs elimination, vaccination and insect control through the use of chemical insecticides. We also discussed complementary measures like monitoring traps, impregnated bednets and curtains, repelents, pheromones, biological control, etc. A cost comparison of insecticide interventions through the use of products belonging to the four main chemical groups was also alone, comparing together conventional formulations versus a slow-release insecticide developed by the Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro. We finally did recommendations on the situation that would justify an insecticide intervention to control sandflies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite opportunities for radiation provided by spatio-temporal isolation, the basic morphological plan of pulmonate snails has remained conservative. In consequence of the resulting dearth of morphological characters and their plasticity, there is a case for using biochemical characters such as exogenous chemicals released by the snails (e.g. amino acids) and their chemoreception niche as taxonomic aids to classify snails of medical importance. As these same chemicals are used by snails to distinguish conspecifics they could also be used as "environmental antibodies" in controlled release formulations (CRF's) designed to remove target snails in a specific, cost-effective and ecologically acceptable manner. The snails, surface-living bacteria, algae and macrophytic plants are considered as co-evolved, interactive modular systems with strong mutualistic elements. Recently, anthropogenic perturbations such as deforestation, and damming of flowing waters, have benefited these modules whereas others such as river canalization, acid deposition, accumulation of pesticide residues and eutrophication have harmed them. Research is needed to elucidate the factors which limit the growth of snails in primitive habitats, uninfluenced by man, as well as in those subject to harmful anthropogenic factors. The understanding thus gained could be applied to develop cost-effective primary health care strategies to reduce or prevent transmission of schistosomiasis and other water related diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux-en-Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). OBJECTIVE: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro-intestinal hormone secretion after an oral glucose load. METHODS AND PROCEDURES: This study was a cross-sectional comparison among non-diabetic, weight-stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight- and age-matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. RESULTS: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. DISCUSSION: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP-1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothalamic neuropeptide oxytocin (OT), which controls childbirth and lactation, receives increasing attention for its effects on social behaviors, but how it reaches central brain regions is still unclear. Here we gained by recombinant viruses selective genetic access to hypothalamic OT neurons to study their connectivity and control their activity by optogenetic means. We found axons of hypothalamic OT neurons in the majority of forebrain regions, including the central amygdala (CeA), a structure critically involved in OT-mediated fear suppression. In vitro, exposure to blue light of channelrhodopsin-2-expressing OT axons activated a local GABAergic circuit that inhibited neurons in the output region of the CeA. Remarkably, in vivo, local blue-light-induced endogenous OT release robustly decreased freezing responses in fear-conditioned rats. Our results thus show widespread central projections of hypothalamic OT neurons and demonstrate that OT release from local axonal endings can specifically control region-associated behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The manuscript describes a study on the blood cholinesterase (ChE) level in an exposed population at different interval of time after spraying with malathion suspension (SRES) use for kala-azar vector control in an endemic area of Bihar, India. The toxicity of a 5% malathion formulation in the form of a slow release emulsified suspension (SRES) was assessed by measuring serum ChE levels in spraymen and in the exposed population.The study showed a significant decrease in ChE levels in the spraymen (p < 0.01) after one week of spraying and in exposed population one week and one month after of spraying (p < 0.01), but was still within the normal range of ChE concentration, one year after spraying, the ChE concentration in the exposed population was the same as prior to spraying (p > 0.01). On no occasion was the decrease in ChE level alarming. A parallel examination of the clinical status also showed the absence of any over toxicity or any behavioural changes in the exposed population. Hence, it may be concluded that 5% malathion slow release formulation, SRES, is a safe insecticide for use as a vector control measure in endemic areas of kala-azar in Bihar, India so long as good personal protection for spraymen is provided to minimize absorption and it can substitute the presently used traditional DDT spray.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical and psychological outcomes in breast cancer survivors. A randomized controlled clinical trial was performed. Seventy-eight (n = 78) breast cancer survivors were assigned to experimental (core stability exercises plus massage-myofascial release) and control (usual health care) groups. The intervention period was 8 weeks. Mood state, fatigue, trunk curl endurance, and leg strength were determined at baseline, after the last treatment session, and at 6 months of followup. Immediately after treatment and at 6 months, fatigue, mood state, trunk curl endurance, and leg strength exhibited greater improvement within the experimental group compared to placebo group. This paper showed that a multimodal program focused on core stability exercises and massage reduced fatigue, tension, depression, and improved vigor and muscle strength after intervention and 6 months after discharge.