991 resultados para conformational analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural and conformational properties of the molecule bis[isopropoxy(thiocarbonyl)]sulfide, [(CH(3))(2)CHOC(S)](2)S, have been studied by vibrational spectroscopy (IR and Raman) and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets). The crystal and molecular structure of the title compound was determined by X-ray diffraction methods. It crystallizes in the monoclinic C2/c space group with a = 8.4007(4), b = 13.5936(5), c = 10.3648(5) angstrom, beta = 106.024(4)degrees and Z = 4 molecules per unit cell. The molecules are sited on a crystallographic twofold axis passing through the sulphide atom and arranged in layers perpendicular to the b-axis. The solid state IR and Raman spectra of the compound give no sign of any other rotamer. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenyisulfonyI]propanamides Y-PhSO(2)CH(Me)C(O)N(OMe)Me (Y = OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by HF/6-31G(d,p) calculations of 3,, indicated the existence of two gauche conformers (g(1) and g(2)), the g, conformer being the most stable and the least polar one (in gas phase and in solution). Both conformers are present in solution of the non polar solvent (CCl(4)) for 1-5 and in solution of the more polar solvents (CHCl(3)) for 1. 4, 5 and (CH(2)Cl(2)) for 5, while only the g(1) conformer is present in solution of the most polar solvent (CH(3)CN) for 1-5. The g, and g2 conformers correspond to the enantiomeric pairs of diastereomers (diast(1) and diast(2)) whose relative configurations are [C(3)(R)N(R)]/[C(3)(s)N(s)] and [C(3)(R)N(s)]/[C(3)(s)N(R)], respectively. The computed carbonyl frequencies for g(1) (diast(1)) and g(2) (diast(2)) stereoisomers of3 match well the experimental values. The NBO analysis, for 3 shows the important role of the orbital interactions in conformer stabilization and the overall balance of these interactions corroborates that the g, conformer is more stable than the 92 one. The observed abnormal solvent effect on the relative intensities of the carbonyl doublet components is attributed to the molecular crowding in the g2 conformer which hinders its solvation in comparison to the g, conformer (diast(1)). X-ray single crystal analysis performed for 3 shows the existence Of two 92, and g(1b) conformers of diastereomers (diast2, and diast(1b)) whose absolute configurations are [C(3)(R)N(s)] and [C(3)(R)N(R)], respectively. The larger population and. thus, the larger stabilization of the g(2), conformer over the gib form in the crystals may be associated with a larger energy gain deriving from dipole moment coupling in the former conformer along with a series of C-H center dot center dot center dot O electrostatic and hydrogen bond interactions, (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenylthio]propanamides Y-PhSCH(Me)C(O)N(OMe)Me (Y=OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by B3LYP/cc-pVDZ calculations of 3, indicated the existence of two gauche conformers (g(1) and g(2)), the g(1) conformer being the more stable and the less polar one (in gas phase and in solution). Both conformers are present in solution of the polar solvents (CH(2)Cl(2) and CH(3)CN) for 1-5 and in solution of the less polar solvent (CHCl(3)) for 1-4, while only the g(1) conformer is present in solution of non polar solvents (n-C(6)H(14) and CCl(4)) and in solution of CHCl(3) for 5. NBO analysis shows that both the sigma(C-S) -> pi*(C=O) (hyperconjugative) and the pi(C=O) -> sigma*(C-S) orbital interactions contribute almost to the same extent for the stabilization of g(1) and g(2) conformers. The pi*(C=O) -> sigma*(C-S), n(S) -> pi*(C=O) and the n(S) -> pi*(C=O) orbital interactions stabilize more the g(1) conformer than the g(2) one. Moreover, the suitable geometry of the g(1) conformer leads to its stabilization through the LP(O2) -> sigma*(C8-H11) orbital interaction (hydrogen bond) along with the strong O([CO])(delta-) center dot center dot center dot H([O-Ph])(delta+) electrostatic interaction. On the other hand, the appropriate geometry of the g(2) conformer leads to its stabilization by the LP(O22) -> sigma*(C9-H13) orbital interaction (hydrogen bond) along with the weak O([OMe])(delta-) center dot center dot center dot H([o`-Ph])(delta+) electrostatic static interaction. As for the 4`-nitro derivative 5 the ortho-phenyl hydrogen atom becomes more acidic, leading to a stronger O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) interaction and, thus, into a larger stabilization of the g(1) conformer in the whole series. This trend is responsible for the unique IR carbonyl band in CHCl(3) solution of 5. The larger occupancy of the pi*(C=O) orbital of the g(1) conformer relative to that of the g(2) conformer, along with the O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) electrostatic interaction (hydrogen bond) justifies the lower carbonyl frequency of the g(1) conformer with respect to the g(2) one, in gas phase and in solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of the IR carbonyl band of the N,N-diethyl-2-[(4`-substituted)phenylsulfonyl]acetamides Et(2)NC(O)CH(2)S(O)(2)-C(6)H(4)-Y (Y = OMe 1, Me 2,1-13, Cl 4, Br 5, NO(2) 6) supported by B3LYP/6-31G(d,p) calculations for 3, indicated the existence of three pairs (anti and syn) of cis (c) and gauche (g(1) and g(2)) conformers in the gas phase, being the gauche conformers significantly more stable than the cis ones. The anti geometry is more stable than the syn one, for each pair of cis and gauche conformers. The summing up of the orbital (NBO analysis) and electrostatic interactions justifies quite well the populations and the v(CO) frequencies of the anti and syn pairs of c, g(1) and g(2) conformers. The IR higher carbonyl frequency component whose population is ca. 10%, in CCl(4), may be ascribed to the least stable and most polar cis conformer pair (in the gas phase) and the lower frequency component whose population is ca. 90%, to the summing up of the populations of the two most stable and least polar gauche conformer pairs (g(1) and g(2)) (in the gas phase). The reversal of the cis(c)/gauche (g(1) + g(2)) population ratio observed in chloroform ca. 60% (cis)/40% (gauche) and the occurrence of the most polar cis(c) conformer only, in acetonitrile, strongly suggests the coalescence of the two gauche components in a unique carbonyl band in solution. A further support to this rationalization is given by the single point PCM solvation model performed by HF/6-31G(d,p) method, which showed a progressive increase of the c/(g(1) + g(2)) ratio going from gas to CCl(4), to CHCl(3) and to CH(3)CN. X-ray single crystal analysis of 4 indicates that this compound assumes, in the solid state, the syn-clinal (gauche) conformation with respect to the [O=C-CH(2)-S] moiety, and the most stable anti geometry relative to the [C(O)N(CH(2)CH(3))(2)] fragment. In order to obtain larger energy gain from the crystal packing the molecules of 4 are linked in centrosymmetric dimers through two C-H center dot center dot center dot O interactions (C-H([O-Ph])center dot center dot center dot O([SO2])) forming a step ladder. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of the IR nu(co) bands of the 2-ethylsulfinyl-(4`-substituted)-phenylthioacetates 4`-Y-C(6)H(4)SC(O)CH(2)S(O)Et (Y = NO(2) 1, Cl 2, Br 3, H 4, Me 5, OMe 6) supported by B3LY/6-31G(d,p) calculations along with the NBO analysis for 1.4 and 6 and X-ray analysis for 3, indicated the existence of four gauche (q-g-syn, g(3)-syn. g(1)-atin and q-g(2)-syn) conformers for 1-6 The calculations reproduce quite well the experimental results, i e the computed q-g-syn and g3-syn conformers correspond in the IR spectrum (in solution), to the nu(co) doublet higher frequency component of larger intensity, while the computed grant, conformer correspond to the nu(co) doublet lower frequency component (in solution) NBO analysis showed that the n(s) -> pi(center dot)(c1=o2), no(co) -> sigma(c1-s3), no(co) -> sigma(c1-c4) orbital interactions are the main factors which stabilize the q-g-syn, g(3)-syn, g(1)-anti and q-g(2)-syn conformers for 1, 4 and 6 The no(co) -> sigma(c1-s3) interaction which stabilizes the q-g-syn, g(3)-syn and q-g(2)-syn conformers into a larger extent than the granti conformer, is responsible for the larger tto frequencies of the former conformers relative to the latter one. The q-g-syn, g(3)-syn and q-g(2)-syn conformers are further stabilized sigma(c4-s5) -> pi(co)center dot (strong). pi(co)/sigma(c1-c4,) no(co) -> sigma(c6-H17[Et]) (weak) and pi(co)/sigma(c4-c5) pi(co) (strong) orbital interactions. The q-g-syn conformer is also stabilized by sigma(c4-s5) -> pi(center dot)(co) (strong), pi(co)/sigma(c4-c5).no(co) -> sigma(c6-H17[Et]), pi(C9=C11[ph]) -> sigma(c4-H6x-CH2]) (weak). no((SO)) -> sigma(C11-H23[ph]) (medium) pi(co)/sigma(c4-c5)(strong) orbital interactions. The q-g-syn conformei is further stabilized by the n(S5) O((C))(8-) S((SO))(8+) attractive Coulornbic interaction while the q-g(2)-syn conformer is destabilized by the n55 0,8c-0) repulsive Coulombic interaction. This analysis indicates the following conformer stabilization order. q-g-syn, g(3)-syn > g(1)-anti >> q-g(2)-syn X-ray single crystal analysis of 3 indicates that it assumes in the solid a distorted q-g(2)-syn geometry which is stabilized through almost the same orbital and Coulombic interaction which takes place for the q-g(2)-syn conformer, in the gas, along with dipole moment coupling and a series intermolecular C-HO0 interactions. (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main theme of this thesis is that there is a common structural basis for drugs acting on the central nervous system (CNS), and that this concept may be used to design new CNS-active drugs which have greater specificity and hence less side-effects. To develop these ideas, the biological basis of how drugs modify CMS neurotransmission is described, and illustrated using dopaminergic pathways. An account is then given of the use of physicochemical concepts in contemporary drug design. The complete conformational analysis of several antipsychotic drugs is used to illustrate some of these techniques in the development of a model for antipsychotic drug action. After reviewing current structure-activity studies in several classes of CNS drugs (antipsychotics, anti-depressants, stimulants, hal1ucinogens, anticonvulsants and analgesics), a hypothesis for a common structural basis of CNS drug action is proposed- This is based on a topographical comparison of the X-ray structures of eight representative CNS-active drugs, and consists of three parts: 1.there is a common structural basis for the activity of many different CNS-active drug classes; 2. an aromatic ring and a nitrogen atom are the primary binding groups whose topographical arrangement is fundamental to the activity of these drug classes; 3. the nature and placement of secondary binding determines different classes of CNS drug activity. A four-Point model for this common structural basis is then defined using 14- CNS-active drug structures that include the original eight used in proposing the hypothesis. The coordinates of this model are: R1 (0. 3.5, 0), R2 (0, -3.5, O), N (4.8. -0.3, 1.4), and R3 (6.3, 1.3, 0), where R1 and R2 represent the point locations of a hydrophobic interaction of the common aromatic ring with a receptor, and R3 locates the receptor point for a hydrogen bond involving the common nitrogen, N. Extended structures were used to define the receptor points R1, R2 and R3, and the complete conformational space of each of the 14 molecules was considered. It is then shoun that the model may be used to predict whether a given structure is likely to show CNS activity: a search over 1,000 entries in the current Merck Index shows a high probability (82%) of CNS activity in compounds fitting the structural model. Analysis of CNS neurotransmitters and neuropeptides shows that these fit the common model well. Based on the available evidence supporting chemical evolution, protein evolution, and the evolution of neurotransmitter functions, it is surmised that the aromatic ring/nitrogen atom pharmacophore proposed in the common model supports the idea of the evolution of CNS receptors and their neurotransmitters, possibly from an aromatic amine or acety1cho1ine acting as a primaeval communicating molecule. The third point in the hypothesis trilogy is then addressed. The extensive conformation-activity analyses that have resulted in well-defined models for five separate CNS drug classes are used to map out the locations of secondary binding groups relative to the common model for anti-psychotics, antidepressants, analgesics, anticholinergics, and anticonvulsants. With this information, and knowledge derived from receptor-binding data, it is postulated that drugs having specified activity could be designed. In order to generate novel structures having a high probability of CNS-activity, a process of drug design is described in which known CNS structures are superimposed topographically using the common model as a template. Atoms regarded as superfluous may be selectively deleted and the required secondary binding groups added in predicted locations to give novel structures. It is concluded that this process provides the basis for the rational design of new lead compounds which could further be optimized for potent and specific CNS activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

omeprazole is a substituted benzimidazole which suppresses gastric-acid secretion by means of H+, K+-ATPase inhibition. It is an optically active drug with the sulfur of the sulfoxide being the chiral center. This pro-drug can be easily converted into its respective sulfenamide at low pH. In this work, omeprazole has been studied in relation to racemization barrier and decomposition reaction. Quantum chemistry coupled to PCA chemometric method were used to find all minimum energy structures. Conformational analysis and calculation of racemization barriers were carried out by PM3 semiempirical method (Gaussian 98). The average racemization energy barrier for all minimum energy structures (43.56 kcal mol(-1)) can be related to the velocity constant in Eyring's equation. The enormous half-life time at 100 degrees C (9.04 x 10(4) years) indicates that the process cannot be observed in human time scale. on the other hand, the difference of free energy change (Delta(Delta G) = -266.78 kcal mol(-1)) for the decomposition reaction shows that the process is favorable to the sulfenamide formation. The highly negative Delta(Delta G) obtained for the decomposition reaction shows that this process is extremely exothermic. This result explains why omeprazole decomposes and does not racemize. (C) 2008 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many potent antimicrobial peptides also present hemolytic activity, an undesired collateral effect for the therapeutic application. Unlike other mastoparan peptides, Polybia-MP1 (IDWKKLLDAAKQIL), obtained from the venom of the social wasp Polybia paulista, is highly selective of bacterial cells. The study of its mechanism of action demonstrated that it permeates vesicles at a greater rate of leakage on the anionic over the zwitterionic, impaired by the presence of cholesterol or cardiolipin; its lytic activity is characterized by a threshold peptide to lipid molar ratio that depends on the phospholipid composition of the vesicles. At these particular threshold concentrations, the apparent average pore number is distinctive between anionic and zwitterionic vesicles, suggesting that pores are similarly formed depending on the ionic character of the bilayer. To prospect the molecular reasons for the strengthened selectivity in Polybia-MP1 and its absence in Mastoparan-X, MD simulations were carried out. Both peptides presented amphipathic alpha-helical structures, as previously observed in Circular Dichroism spectra, with important differences in the extension and stability of the helix; their backbone solvation analysis also indicate a different profile, suggesting that the selectivity of Polybia-MP1 is a consequence of the distribution of the charged and polar residues along the peptide helix, and on how the solvent molecules orient themselves according to these electrostatic interactions. We suggest that the lack of hemolytic activity of Polybia-MP1 is due to the presence and position of Asp residues that enable the equilibrium of electrostatic interactions and favor the preference for the more hydrophilic environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudos anteriores sugerem que o óleo essencial da Aniba canelilla contendo altos níveis de 1-nitro-2-feniletano apresenta atividade antinociceptiva, antiinflamatória e hipotensora. Um estudo teórico de correlação entre estrutura química versus atividade biológica do 1-nitro-2-feniletano e a prostaglandinaendoperóxido sintase foi realizado. Além disso, foi feita uma análise conformacional do nitrofeniletano, bem como modificações em sua estrutura química, obtendo-se derivados nitroestirenos e cinamatos, para a posterior avaliação da relação estrutura-propriedade. A análise conformacional do nitrofeniletano foi realizada usando o método DFT/B3LYP com o conjunto de base 6-31G(d) através da variação da torção do angulo dihedro entre as ligações dos carbonos C1-C2 ligadas aos grupos fenila e nitro, com variação de intervalos de 5°, na faixa de 0° a 180°, visando a busca dos confôrmeros de menor energia. O confôrmero de 180º do dihedro O2N-C1-C2-C6H5 foi significativamente mais estável e isto pode ser explicado em termos do equilíbrio pela presença de sete geometrias de mais baixas energias. A análise de HOMO e LUMO mostra que os grupamentos fenila e metileno contribuem para a formação deste orbital. O cálculo de energia e determinação de propriedades eletrônicas relacionadas com o mecanismo de interação com a ciclooxigenase demonstrou boa correlação entre os grupos nitro e carboxílico, os quais podem ser classificados como bioisósteros. Os resultados das propriedades físico-químicas calculadas indicam uma maior correlação do nitrofeniletano com o ácido acetilsalicílico, podendo ter seu mecanismo de ação relacionado através de interações com a Arg-120 e Ser-530.Cálculos realizados com a guanidina protonada pelo DFT/B3LYP/6-31G(d,p) parao complexo contendo o grupo carboxilato exibem uma energia de interação mais favorável, com valor de -136,34 kcal/mol, quando comparado com a molécula contendo o grupo nitro, com valor de -12,84 kcal/mol, o que pode explicar a maior efetividade da indometacina, semelhante aos resultados biológicos. Os derivados do nitrofeniletano apresentaram uma relação estrutural com derivados de cinamatos, diferindo nas propriedades redox, o que pode favorecer o desenvolvimento de estruturas protótipo como moléculas bioativas a partir destes esqueletos moleculares.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os maiores problemas de contaminação de aquíferos e solos são atribuídos aos hidrocarbonetos monoaromáticos, que são os constituintes mais solúveis e mais móveis da fração de algumas substâncias, como por exemplo, da gasolina. Para a remoção destes contaminantes, a adsorção por carvão ativado é o método mais utilizado, pois o carvão apresenta uma habilidade significativa para adsorver componentes orgânicos de baixo peso molecular, como o benzeno, o tolueno e o p-xileno. Neste trabalho, verificou-se a adsorção dos mesmos sobre carvão ativado via simulação computacional. Como base, utilizou-se o modelo postulado de carvão preparado por Bourke et al. (2007). Várias etapas foram concluídas desde os modelos das estruturas do carvão e dos poluentes até as simulações de dinâmica molecular. Para a análise conformacional da estrutura do carvão, foi utilizado o método semi-empírico PM3 e para o processo de dinâmica, o campo de força AMBER FF99SB. A estrutura passou por um aquecimento, à pressão constante, até alcançar uma temperatura final de 298K (25ºC), sendo suas informações coletadas a cada 50ps. Posteriormente, a estrutura foi submetida a equilíbrio de sistema, à temperatura constante de 298K (25ºC), por 500ps para então suas informações serem analisadas. Por fim, o sistema foi então submetido à dinâmica molecular durante 15 ns. Após análise dos resultados, constatou-se que os grupos éter, lactona e carbonila (cetona) presentes na estrutura de carvão ativado conferem caráter ácido à mesma e devido a isto e à sua consequente carga superficial negativa, a adsorção tornou-se viável uma vez que os poluentes apresentavam carga superficial positiva, o que corrobora o entendimento que já se tem a respeito desse tipo de fenômeno.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetic resolution of racemic alpha-bromophenylacetamides 1 was achieved in the presence of benzenethiolate and Cinchona alkaloid salts as phase-transfer catalysts or benzenethiol and quinine, yielding (S)-enantioenriched alpha-sulfanylated products. The observed stereoselection was rationalized on the basis of the best fitting of 1 and the resolving agent in the ternary complexes. (C) 2012 Elsevier Ltd. All rights reserved.