956 resultados para concave refractive microlens array
Resumo:
Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.
Resumo:
The aim of the work was to investigate the pattern of chemoreceptor sensilla in adults and fifth stage nymphs of Rhodnius prolixus, R. neglectus, Triatoma infestans and T. sordida in order to study differences and similarities between genera and species. Three types of sensilla were analyzed by light microscopy: thin-walled trichoidea, thick-walled trichoidea and basiconica. The number of sensilla of each three types were counted. The length of the antennal segments were also used as a variable for the analysis. The statistical analysis showed that the number of these antennal chemoreceptors had significant differences between species and between adults and nymphs of each species. Discriminant analysis separates incompletely the fifth stage nymphs of the four species and showed similarity between them. Discriminant analysis performed with 12 variables of the antennae, allowed a complete separation of the adults of the four species.
Resumo:
The advent and application of high-resolution array-based comparative genome hybridization (array CGH) has led to the detection of large numbers of copy number variants (CNVs) in patients with developmental delay and/or multiple congenital anomalies as well as in healthy individuals. The notion that CNVs are also abundantly present in the normal population challenges the interpretation of the clinical significance of detected CNVs in patients. In this review we will illustrate a general clinical workflow based on our own experience that can be used in routine diagnostics for the interpretation of CNVs.
Resumo:
Structural genomic abnormalities play a key role in the pathogenesis of human disorders and represent one of the first causes of mental impairment, complex syndromes and tumors. In order to detect these chromosomal abnormalities, many methodologies have been developed with limits. The new ARRAY based Comparative Genomic Hybridization (ARRAY CGH) is a revolutionary approach which allows to characterize very small genetic abnormalities undetectable by the standard approaches and in the absence of any associated clinical information. The aim of this article is to describe why the application of a new array CGH methodology is necessary in the etiological search for genetic diseases, what the limits of the standard approaches are and to whom arrayCGH analyses can be applied in a pediatric environment. Examples of our practice will be presented.
Resumo:
Chemokines recruit and activate leukocytes, assisting granuloma formation. Herein, we evaluated plasma chemokines in patients with active tuberculosis (ATB) and after completing treatment (TTB) and compared them to BCG-vaccinated healthy controls (HC). Levels of chemokines were measured by cytometric bead array. Levels of CXCL8, CXCL9 and CXCL10 were higher in ATB patients compared to HC, but they decreased in TTB. Levels of CCL2 and CCL5 in ATB patients were similar to those observed in HC. Thus, the high levels of CXC-chemokines detected during ATB, which can modulate the trafficking of immune cells from the periphery to the site of infection, were reversed by anti-mycobacterial treatment.
Resumo:
Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
Resumo:
Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
Resumo:
The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Resumo:
Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Resumo:
Recently, we showed that connexin37 (Cx37) protects against early atherosclerotic lesion development by regulating monocyte adhesion. The expression of this gap junction protein is altered in mouse and human atherosclerotic lesions; it is increased in macrophages newly recruited to the lesions and disappears from the endothelium of advanced plaques. To obtain more insight into the molecular role of Cx37 in advanced atherosclerosis, we used micro-array analysis for gene expression profiling in aortas of ApoE(-/-) and Cx37(-/-)ApoE(-/-) mice before and after 18 weeks of cholesterol-rich diet. Out of >15,000 genes, 106 genes were significantly differentially expressed in young mice before diet (P-value of <0.05, fold change of >0.7 or <-0.7, and intensity value >2.2 times background). Ingenuity pathway analysis (IPA) revealed differences in genes involved in cell-to-cell signaling and interaction, cellular compromise and nutritional disease. In addition, we identified 100 genes that were significantly perturbed after the cholesterol-rich diet. Similar to the analysis on 10-week-old mice, IPA revealed differences in genes involved in cell-to-cell signaling and interaction as well as to immuno-inflammatory disease. Furthermore, we found important changes in genes involved in vascular calcification and matrix degradation, some of which were confirmed at protein level by (immuno-)histochemistry. In conclusion, we suggest that Cx37 deficiency alters the global differential gene expression profiles in young mice towards a pro-inflammatory phenotype, which are then further influenced in advanced atherosclerosis. The results provide new insights into the significance of Cx37 in plaque calcification.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
OBJECTIVE:: Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. DESIGN:: Descriptive case report. SETTING:: Genetic department and neonatal intensive care unit of a tertiary care children's hospital. INTERVENTIONS:: None. PATIENT:: We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. MEASUREMENTS AND MAIN RESULTS:: An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. CONCLUSIONS:: Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.