992 resultados para computational statistics
Resumo:
We introduce in this paper a new class of discrete generalized nonlinear models to extend the binomial, Poisson and negative binomial models to cope with count data. This class of models includes some important models such as log-nonlinear models, logit, probit and negative binomial nonlinear models, generalized Poisson and generalized negative binomial regression models, among other models, which enables the fitting of a wide range of models to count data. We derive an iterative process for fitting these models by maximum likelihood and discuss inference on the parameters. The usefulness of the new class of models is illustrated with an application to a real data set. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The use of inter-laboratory test comparisons to determine the performance of individual laboratories for specific tests (or for calibration) [ISO/IEC Guide 43-1, 1997. Proficiency testing by interlaboratory comparisons - Part 1: Development and operation of proficiency testing schemes] is called Proficiency Testing (PT). In this paper we propose the use of the generalized likelihood ratio test to compare the performance of the group of laboratories for specific tests relative to the assigned value and illustrate the procedure considering an actual data from the PT program in the area of volume. The proposed test extends the test criteria in use allowing to test for the consistency of the group of laboratories. Moreover, the class of elliptical distributions are considered for the obtained measurements. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we proposed a new two-parameter lifetime distribution with increasing failure rate, the complementary exponential geometric distribution, which is complementary to the exponential geometric model proposed by Adamidis and Loukas (1998). The new distribution arises on a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, including the mean and variance, variation coefficient, and modal value. The parameter estimation is based on the usual maximum likelihood approach. We report the results of a misspecification simulation study performed in order to assess the extent of misspecification errors when testing the exponential geometric distribution against our complementary one in the presence of different sample size and censoring percentage. The methodology is illustrated on four real datasets; we also make a comparison between both modeling approaches. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.
Resumo:
Predictors of random effects are usually based on the popular mixed effects (ME) model developed under the assumption that the sample is obtained from a conceptual infinite population; such predictors are employed even when the actual population is finite. Two alternatives that incorporate the finite nature of the population are obtained from the superpopulation model proposed by Scott and Smith (1969. Estimation in multi-stage surveys. J. Amer. Statist. Assoc. 64, 830-840) or from the finite population mixed model recently proposed by Stanek and Singer (2004. Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 1119-1130). Predictors derived under the latter model with the additional assumptions that all variance components are known and that within-cluster variances are equal have smaller mean squared error (MSE) than the competitors based on either the ME or Scott and Smith`s models. As population variances are rarely known, we propose method of moment estimators to obtain empirical predictors and conduct a simulation study to evaluate their performance. The results suggest that the finite population mixed model empirical predictor is more stable than its competitors since, in terms of MSE, it is either the best or the second best and when second best, its performance lies within acceptable limits. When both cluster and unit intra-class correlation coefficients are very high (e.g., 0.95 or more), the performance of the empirical predictors derived under the three models is similar. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Local influence diagnostics based on estimating equations as the role of a gradient vector derived from any fit function are developed for repeated measures regression analysis. Our proposal generalizes tools used in other studies (Cook, 1986: Cadigan and Farrell, 2002), considering herein local influence diagnostics for a statistical model where estimation involves an estimating equation in which all observations are not necessarily independent of each other. Moreover, the measures of local influence are illustrated with some simulated data sets to assess influential observations. Applications using real data are presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we extend partial linear models with normal errors to Student-t errors Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data the local influence curvatures are derived and some diagnostic graphics are proposed A motivating example preliminary analyzed under normal errors is reanalyzed under Student-t errors The local influence approach is used to compare the sensitivity of the model estimates (C) 2010 Elsevier B V All rights reserved
Resumo:
The Birnbaum-Saunders distribution has been used quite effectively to model times to failure for materials subject to fatigue and for modeling lifetime data. In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the non-null distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the Birnbaum-Saunders regression model. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the shape parameter. Monte Carlo simulation is presented in order to compare the finite-sample performance of these tests. We also present two empirical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio test tends to be liberal when the sample size is small. We obtain a correction factor which reduces the size distortion of the test. Also, we consider a parametric bootstrap scheme to obtain improved critical values and improved p-values for the likelihood ratio test. The numerical results show that the modified tests are more reliable in finite samples than the usual likelihood ratio test. We also present an empirical application. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. in this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The two-parameter Birnbaum-Saunders distribution has been used successfully to model fatigue failure times. Although censoring is typical in reliability and survival studies, little work has been published on the analysis of censored data for this distribution. In this paper, we address the issue of performing testing inference on the two parameters of the Birnbaum-Saunders distribution under type-II right censored samples. The likelihood ratio statistic and a recently proposed statistic, the gradient statistic, provide a convenient framework for statistical inference in such a case, since they do not require to obtain, estimate or invert an information matrix, which is an advantage in problems involving censored data. An extensive Monte Carlo simulation study is carried out in order to investigate and compare the finite sample performance of the likelihood ratio and the gradient tests. Our numerical results show evidence that the gradient test should be preferred. Further, we also consider the generalized Birnbaum-Saunders distribution under type-II right censored samples and present some Monte Carlo simulations for testing the parameters in this class of models using the likelihood ratio and gradient tests. Three empirical applications are presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.