948 resultados para computational modelling
Resumo:
The ability to grow microscopic spherical birefringent crystals of vaterite, a calcium carbonate mineral, has allowed the development of an optical microrheometer based on optical tweezers. However, since these crystals are birefringent, and worse, are expected to have non-uniform birefringence, computational modeling of the microrheometer is a highly challenging task. Modeling the microrheometer - and optical tweezers in general - typically requires large numbers of repeated calculations for the same trapped particle. This places strong demands on the efficiency of computational methods used. While our usual method of choice for computational modelling of optical tweezers - the T-matrix method - meets this requirement of efficiency, it is restricted to homogeneous isotropic particles. General methods that can model complex structures such as the vaterite particles, such as finite-difference time-domain (FDTD) or finite-difference frequency-domain (FDFD) methods, are inefficient. Therefore, we have developed a hybrid FDFD/T-matrix method that combines the generality of volume-discretisation methods such as FDFD with the efficiency of the T-matrix method. We have used this hybrid method to calculate optical forces and torques on model vaterite spheres in optical traps. We present and compare the results of computational modelling and experimental measurements.
Resumo:
The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.
Resumo:
In this talk, I will describe various computational modelling and data mining solutions that form the basis of how the office of Deputy Head of Department (Resources) works to serve you. These include lessons I learn about, and from, optimisation issues in resource allocation, uncertainty analysis on league tables, modelling the process of winning external grants, and lessons we learn from student satisfaction surveys, some of which I have attempted to inject into our planning processes.
Resumo:
One of the core tasks of the virtual-manufacturing environment is to characterise the transformation of the state of material during each of the unit processes. This transformation in shape, material properties, etc. can only be reliably achieved through the use of models in a simulation context. Unfortunately, many manufacturing processes involve the material being treated in both the liquid and solid state, the trans-formation of which may be achieved by heat transfer and/or electro-magnetic fields. The computational modelling of such processes, involving the interactions amongst various interacting phenomena, is a consider-able challenge. However, it must be addressed effectively if Virtual Manufacturing Environments are to become a reality! This contribution focuses upon one attempt to develop such a multi-physics computational toolkit. The approach uses a single discretisation procedure and provides for direct interaction amongst the component phenomena. The need to exploit parallel high performance hardware is addressed so that simulation elapsed times can be brought within the realms of practicality. Examples of Multiphysics modelling in relation to shape casting, and solder joint formation reinforce the motivation for this work.
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Modified montmorillonite was prepared at different surfactant (HDTMA) loadings through ion exchange. The conformational arrangement of the loaded surfactants within the interlayer space of MMT was obtained by computational modelling. The conformational change of surfactant molecules enhance the visual understanding of the results obtained from characterization methods such as XRD and surface analysis of the organoclays. Batch experiments were carried out for the adsorption of p-chlorophenol (PCP) and different conditions (pH and temperature) were used in order to determine the optimum sorption. For comparison purpose, the experiments were repeated under the same conditions for p-nitrophenol (PNP). Langmuir and Freundlich equations were applied to the adsorption isotherm of PCP and PNP. The Freundlich isotherm model was found to be the best fit for both of the phenolic compounds. This involved multilayer adsorptions in the adsorption process. In particular, the binding affinity value of PNP was higher than that of PCP and this is attributable to their hydrophobicities. The adsorption of the phenolic compounds by organoclays intercalated with highly loaded surfactants was markedly improved possibly due to the fact that the intercalated surfactant molecules within the interlayer space contribute to the partition phases, which result in greater adsorption of the organic pollutants.
Resumo:
alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.
Resumo:
Background Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. Results We present STI-GMaS (Sexually-Transmitted Infections – Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE–cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. Conclusions STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational and clinical/experimental disciplines. With the propensity for model reuse and extension, there is much scope within STI-GMaS to allow clinical and experimental studies to inform model inputs and drive future model development. Many of the modelling paradigms and software design principles deployed to date transfer readily to other STIs, both bacterial and viral; forthcoming releases of STI-GMaS will extend the software to incorporate a more diverse range of infections.
Resumo:
Epigenetic changes correspond to heritable modifications of the chromosome structure, which do not involve alteration of the DNA sequence but do affect gene expression. These mechanisms play an important role in normal cell differentiation, but aberration is associated also with several diseases, including cancer and neural disorders. In consequence, despite intensive studies in recent years, the contribution of modifications remains largely unquantified due to overall system complexity and insufficient data. Computational models can provide powerful auxiliary tools to experimentation, not least as scales from the sub-cellular through cell populations (or to networks of genes) can be spanned. In this paper, the challenges to development, of realistic cross-scale models, are discussed and illustrated with respect to current work.
Resumo:
Background and Aims: The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. Methods: The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Key Results: Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. Conclusions: This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.
Resumo:
Due to the advent of varied types of masonry systems a comprehensive failure mechanism of masonry essential for the understanding of its behaviour is impossible to be determined from experimental testing. As masonry is predominantly used in wall structures a biaxial stress state dominates its failure mechanism. Biaxial testing will therefore be necessary for each type of masonry, which is expensive and time consuming. A computational method would be advantageous; however masonry is complex to model which requires advanced computational modelling methods. This thesis has formulated a damage mechanics inspired modelling method and has shown that the method effectively determines the failure mechanisms and deformation characteristics of masonry under biaxial states of loading.
Resumo:
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.