914 resultados para complexity in spatiotemporal evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The muntjacs (Muntiacus, Cervidae) are famous for their rapid and radical karyotypic diversification via repeated tandem chromosome fusions, constituting a paradigm for the studies of karyotypic evolution. Of the five muntjac species with defined karyotyp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diversity and evolution of bitter taste perception in mammals is not well understood. Recent discoveries of bitter taste receptor (T2R) genes provide an opportunity for a genetic approach to this question. We here report the identification of 10 and 30 putative T2R genes from the draft human and mouse genome sequences, respectively, in addition to the 23 and 6 previously known T2R genes from the two species. A phylogenetic analysis of the T2R genes suggests that they can be classified into three main groups, which are designated A, B, and C. Interestingly, while the one-to-one gene orthology between the human and mouse is common to group B and C genes, group A genes show a pattern of species- or lineage-specific duplication. It is possible that group B and C genes are necessary for detecting bitter tastants common to both humans and mice, whereas group A genes are used for species-specific bitter tastants. The analysis also reveals that phylogenetically closely related T2R genes are close in their chromosomal locations, demonstrating tandem gene duplication as the primary source of new T2Rs. For closely related paralogous genes, a rate of nonsynonymous nucleotide substitution significantly higher than the rate of synonymous substitution was observed in the extracellular regions of T2Rs, which are presumably involved in tastant-binding. This suggests the role of positive selection in the diversification of newly duplicated T2R genes. Because many natural poisonous substances are bitter, we conjecture that the mammalian T2R genes are under diversifying selection for the ability to recognize a diverse array of poisons that the organisms may encounter in exploring new habitats and diets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trypsin-like serine protease (Tryp_SPc) family is ubiquitous in animals and plays diverse roles, especially in the digestive system, in different phyla. In the mosquito, some Tryp_SPc proteases make important contributions to the digestion of the bloo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method for analysing the operational complexity in supply chains by using an entropic measure based on information theory. The proposed approach estimates the operational complexity at each stage of the supply chain and analyses the changes between stages. In this paper a stage is identified by the exchange of data and/or material. Through analysis the method identifies the stages where the operational complexity is both generated and propagated (exported, imported, generated or absorbed). Central to the method is the identification of a reference point within the supply chain. This is where the operational complexity is at a local minimum along the data transfer stages. Such a point can be thought of as a 'sink' for turbulence generated in the supply chain. Where it exists, it has the merit of stabilising the supply chain by attenuating uncertainty. However, the location of the reference point is also a matter of choice. If the preferred location is other than the current one, this is a trigger for management action. The analysis can help decide appropriate remedial action. More generally, the approach can assist logistics management by highlighting problem areas. An industrial application is presented to demonstrate the applicability of the method. © 2013 Operational Research Society Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly described in the theory. The obtained formulas of level energies and excitation energies scaled in the small- and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the attenuation of the 2(1)(+) excitation energies against the valence nucleon product NpNn for five mass regions from A = 100-200.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative investigation on energy distribution between two photosystems were carried out in the sporophytes and gametophytes of Porphyra yezoensis. By performing 77 K fluorescence spectra, we suggested that there probably existed a pathway for energy transfer from PS II to PS I to redistribute the absorbed energy in gametophytes, while no such a way or at minor level in sporophytes. Electron transfer inhibitor DCMU blocked the energy transfer from PS II to PS I in gametophytes, but no obvious effects on sporophytes. These indicated that excitation energy distribution between two photosystems in gametophytes was more cooperative than that in sporophytes. These data in ontogenesis reflected the evolution process of photosynthetic organisms and supported the hypothesis of independent evolution of each photosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.