993 resultados para commercial sensitivity
Resumo:
The resources listed in this document describe the design and construction opportunities available to building owners who wish to re-Life their properties. They do not yet examine management opportunities, which may also help owners improve the efficiency of their existing stock.
Resumo:
In recent years considerable effort has gone into quantifying the reuse and recycling potential of waste generated by residential construction. Unfortunately less information is available for the commercial refurbishment sector. It is hypothesised that significant economic and environmental benefit can be derived from closer monitoring of the commercial construction waste stream. With the aim of assessing these benefits, the authors are involved in ongoing case studies to record both current standard practice and the most effective means of improving the eco-efficiency of materials use in office building refurbishments. This paper focuses on the issues involved in developing methods for obtaining the necessary information on better waste management practices and establishing benchmark indicators. The need to create databases to establish benchmarks of waste minimisation best practice in commercial construction is stressed. Further research will monitor the delivery of case study projects and the levels of reuse and recycling achieved in directly quantifiable ways
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
Renovation and refurbishment of the existing commercial building stock is a growing area of total construction activity and a significant generator of waste sent to landfill in Australia. A written waste management plan (WMP) is a widespread regulatory requirement for commercial office redevelopment projects. There is little evidence, however, that WMPs actually increase the quantity of waste that is ultimately diverted from landfill. Some reports indicate an absence of any formal verification or monitoring process by regulators to assess the efficacy of the plans. In order to gauge the extent of the problem a survey was conducted of twenty four consultants and practitioners involved in commercial office building refurbishment projects to determine the state of current practice with regard to WMPs and to elicit suggestions with regard to ways of making the process more effective. Considerable variation in commitment to recycling policies was encountered indicating a need to revisit waste minimisation practices if the environmental performance of refurbishment projects is to be improved.
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
Purpose – The purpose of this paper is to set out to explore the similarities and differences between jargon used to describe future-focussed commercial building product. This is not so much an exercise in semantics as an attempt to demonstrate that responses to challenges facing the construction and property sectors may have more to do with language than is generally appreciated. Design/methodology/approach – This is a conceptual analysis which draws upon relevant literature. Findings – Social responsibility and sustainability are often held to be much the same thing, with each term presupposing the existence of the other. Clearly, however, there are incidences where sustainable commercial property investment (SCPI) may not be particularly socially responsible, despite being understood as an environmentally friendly initiative. By contrast, socially responsible assets, at least in theory, should always be more sustainable than mainstream non-ethically based investment. Put simply, the expression of social responsibility in the built environment may evoke, and thereby deliver, a more sustainable product, as defined by wider socially inclusive parameters. Practical implications – The findings show that promoting an ethic of social responsibility may well result in more SCPI. Thus, the further articulation and celebration of social responsibility concepts may well help to further advance a sustainable property investment agenda, which is arguably more concerned about demonstrability of efficiency than wider public good outcomes. Originality/value – The idea that jargon affects outcomes is not new. However, this idea has rarely, if ever, been applied to the distinctions between social responsibility and sustainability. Even a moderate re-emphasis on social responsibility in preference to sustainability may well provide significant future benefits with respect to the investment, building and refurbishment of commercial property.
Resumo:
The paper investigates if there are any discernible trends in the U.S. and Australian commercial property public debt markets with the onset of the global financial crisis (GFC). Commercial mortgage-backed securities and unsecured bonds issued by real estate investment trusts for the period 2000 to Q3:2009 are reviewed. It is shown that events in the equity markets have an impact on the pricing of these two instruments. Furthermore, the impact of subdued activity in these financing instruments on the commercial property market is discussed.
Resumo:
A comprehensive voltage imbalance sensitivity analysis and stochastic evaluation based on the rating and location of single-phase grid-connected rooftop photovoltaic cells (PVs) in a residential low voltage distribution network are presented. The voltage imbalance at different locations along a feeder is investigated. In addition, the sensitivity analysis is performed for voltage imbalance in one feeder when PVs are installed in other feeders of the network. A stochastic evaluation based on Monte Carlo method is carried out to investigate the risk index of the non-standard voltage imbalance in the network in the presence of PVs. The network voltage imbalance characteristic based on different criteria of PV rating and location and network conditions is generalized. Improvement methods are proposed for voltage imbalance reduction and their efficacy is verified by comparing their risk index using Monte Carlo simulations.
Resumo:
Determining sensitivity and specificity of a postoperative infection surveillance process is a difficult undertaking. Because postoperative infections are rare, vast numbers of negative results exist, and it is often not reasonable to assess them all. This study gives a methodological framework for estimating sensitivity and specificity by taking only a small sample of the number of patients who test negative and comparing their findings to the reference or “gold standard” rather than comparing the findings of all patients to the gold standard. It provides a formula for deriving confidence intervals for these estimates and a guide to minimum requirements for sampling results.
Resumo:
There is a need in industry for a commodity polyethylene film with controllable degradation properties that will degrade in an environmentally neutral way, for applications such as shopping bags and packaging film. Additives such as starch have been shown to accelerate the degradation of plastic films, however control of degradation is required so that the film will retain its mechanical properties during storage and use, and then degrade when no longer required. By the addition of a photocatalyst it is hoped that polymer film will breakdown with exposure to sunlight. Furthermore, it is desired that the polymer film will degrade in the dark, after a short initial exposure to sunlight. Research has been undertaken into the photo- and thermo-oxidative degradation processes of 25 ìm thick LLDPE (linear low density polyethylene) film containing titania from different manufacturers. Films were aged in a suntest or in an oven at 50 °C, and the oxidation product formation was followed using IR spectroscopy. Degussa P25, Kronos 1002, and various organic-modified and doped titanias of the types Satchleben Hombitan and Hunstsman Tioxide incorporated into LLDPE films were assessed for photoactivity. Degussa P25 was found to be the most photoactive with UVA and UVC exposure. Surface modification of titania was found to reduce photoactivity. Crystal phase is thought to be among the most important factors when assessing the photoactivity of titania as a photocatalyst for degradation. Pre-irradiation with UVA or UVC for 24 hours of the film containing 3% Degussa P25 titania prior to aging in an oven resulted in embrittlement in ca. 200 days. The multivariate data analysis technique PCA (principal component analysis) was used as an exploratory tool to investigate the IR spectral data. Oxidation products formed in similar relative concentrations across all samples, confirming that titania was catalysing the oxidation of the LLDPE film without changing the oxidation pathway. PCA was also employed to compare rates of degradation in different films. PCA enabled the discovery of water vapour trapped inside cavities formed by oxidation by titania particles. Imaging ATR/FTIR spectroscopy with high lateral resolution was used in a novel experiment to examine the heterogeneous nature of oxidation of a model polymer compound caused by the presence of titania particles. A model polymer containing Degussa P25 titania was solvent cast onto the internal reflection element of the imaging ATR/FTIR and the oxidation under UVC was examined over time. Sensitisation of 5 ìm domains by titania resulted in areas of relatively high oxidation product concentration. The suitability of transmission IR with a synchrotron light source to the study of polymer film oxidation was assessed as the Australian Synchrotron in Melbourne, Australia. Challenges such as interference fringes and poor signal-to-noise ratio need to be addressed before this can become a routine technique.