851 resultados para collecting vehicle routing
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
Heuristics for stochastic and dynamic vehicle routing problems are often kept relatively simple, in part due to the high computational burden resulting from having to consider stochastic information in some form. In this work, three existing heuristics are extended by three different local search variations: a first improvement descent using stochastic information, a tabu search using stochastic information when updating the incumbent solution, and a tabu search using stochastic information when selecting moves based on a list of moves determined through a proxy evaluation. In particular, the three local search variations are designed to utilize stochastic information in the form of sampled scenarios. The results indicate that adding local search using stochastic information to the existing heuristics can further reduce operating costs for shipping companies by 0.5–2 %. While the existing heuristics could produce structurally different solutions even when using similar stochastic information in the search, the appended local search methods seem able to make the final solutions more similar in structure.
Resumo:
O presente relatório tem por objectivo apresentar e descrever de forma detalhada o projecto “Optimização de rotas na recolha de leite”. Este projecto foi conduzido no âmbito do estágio curricular, realizado na parte não-lectiva do Mestrado em Sistemas de Informação de Gestão, do Instituto Superior de Contabilidade e Administração de Coimbra, tendo decorrido na empresa Lacticoop entre 03 de Outubro de 2011 e 27 de Julho de 2012. O projecto surge da necessidade da empresa optimizar as suas rotas de recolha de leite. Essa optimização pode ser subdividida em duas partes distintas: i) a recolha de dados, características e processos relativos à empresa e aos sistemas com que labora; ii) e o desenvolvimento do software necessário para a optimização de uma componente desses sistemas, associada ao processo de recolha de leite. O primeiro ponto envolve a recolha de informação sobre a política interna da empresa, a recolha de dados acerca dos veículos, rotas, consumos e condutores, assim como o levantamento de procedimentos e tecnologias utilizadas. O segundo ponto envolve a modelação do problema em estudo, o levantamento das necessidades de software para implementar o sistema de informação, a avaliação de soluções de software e desenvolvimento/adaptação da aplicação informática, assim como a implementação do software desenvolvido / adaptado e testes. Actualmente a empresa não dispõe de qualquer automatismo para a definição de rotas, sendo o processo de escalonamento de rotas feito manualmente. Este processo é bastante moroso e complexo, envolvendo a troca de informações entre o gestor e os condutores das viaturas. É um processo gradual, numa sequência de detecção de erros e correcção desses mesmos erros. Esta metodologia conduz a soluções bastante ineficientes, desde logo pela desactualização das soluções relativamente à efemeridade dos dados, especialmente ao nível de quantidades de recolha do produto. A razão da escolha de um sistema informático que permita optimizar as rotas prende-se essencialmente com a rapidez na obtenção de soluções e na capacidade de integração de dados actualizados. Este processo recorre a técnicas e modelos de optimização que envolvem o problema de Rotas de Veículos (Vehicle Routing Problem), sendo, em geral, um problema de difícil resolução em função do número de clientes envolvidos. Todavia, trata-se de um sistema que traz enormes benefícios no apoio ao processo de decisão por parte do gestor. Neste estágio pretendeu-se, como objectivo principal, desenvolver uma aplicação que permita optimizar as rotas dos veículos envolvidos no processo de recolha de leite. Os benefícios do sistema na diminuição de distâncias percorridas pelas viaturas de recolha e no aumento da eficiência do sistema de transportes, serão evidenciados no trabalho desenvolvido. A aplicação foi criada no software Eclipse (utilizando a linguagem Java). Na primeira fase do projecto estava previsto monitorizar as rotas e consumos dos veículos através da tecnologia de geo-posicionamento por satélite (GPS), de forma a atribuir comissões sobre a poupança de combustível aos condutores dos veículos. Não foi possível concluir esta fase devido à inexistência dessa tecnologia nas viaturas e pelo facto de a empresa ter retirado essa prioridade a esse investimento.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
E-grocery is gradually becoming viable or a necessity for many families. Yet, most e-supermarkets are seen as providers of low value "staple" and bulky goods mainly. While each store has a large number of SKU available, these products are mainly necessity goods with low marginal value for hedonistic consumption. A need to acquire diverse products (e.g., organic), premium priced products (e.g., wine) for special occasions (e.g., anniversary, birthday), or products just for health related reasons (e.g., allergies, diabetes) are yet to be served via one-stop e-tailers. In this paper, we design a mathematical model that takes into account consumers' geo-demographics and multi-product sourcing capacity for creating critical mass and profit. Our mathematical model is a variant of Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which we extend by adding intermediate locations for trucks to meet and exchange goods. We illustrate our model for the city of Istanbul using GIS maps, and discuss its various extensions as well as managerial implications.
Resumo:
Purpose – The purpose of this paper is to investigate the “last mile” delivery link between a hub and spoke distribution system and its customers. The proportion of retail, as opposed to non-retail (trade) customers using this type of distribution system has been growing in the UK. The paper shows the applicability of simulation to demonstrate changes in overall delivery policy to these customers. Design/methodology/approach – A case-based research method was chosen with the aim to provide an exemplar of practice and test the proposition that simulation can be used as a tool to investigate changes in delivery policy. Findings – The results indicate the potential improvement in delivery performance, specifically in meeting timed delivery performance, that could be made by having separate retail and non-retail delivery runs from the spoke terminal to the customer. Research limitations/implications – The simulation study does not attempt to generate a vehicle routing schedule but demonstrates the effects of a change on delivery performance when comparing delivery policies. Practical implications – Scheduling and spreadsheet software are widely used and provide useful assistance in the design of delivery runs and the allocation of staff to those delivery runs. This paper demonstrates to managers the usefulness of investigating the efficacy of current design rules and presents simulation as a suitable tool for this analysis. Originality/value – A simulation model is used in a novel application to test a change in delivery policy in response to a changing delivery profile of increased retail deliveries.
Resumo:
The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.
Resumo:
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.
Resumo:
Chaque année le feu brûle quelques dizaines de milliers d’hectares de forêts québécoises. Le coût annuel de prévention et de lutte contre les feux de forêts au Québec est de l’ordre de plusieurs dizaines de millions de dollars. Le présent travail contribue à la réduction de ces coûts à travers l’automatisation du processus de planification des opérations de suppression des feux de forêts majeurs. Pour ce faire, un modèle mathématique linéaire en nombres entiers a été élaboré, résolu et testé; introduisant un nouveau cas particulier à la littérature des Problèmes de Tournées de Véhicules (VRP). Ce modèle mathématique concerne le déploiement aérien des ressources disponibles pour l’extinction des incendies. Le modèle élaboré a été testé avec CPLEX sur des cas tirés de données réelles. Il a permis de réduire le temps de planification des opérations d’extinction des feux de forêts majeurs de 75% dans les situations courantes.
Resumo:
O elevado custo da operação de recolha de resíduos urbanos e a necessidade de cumprir metas dispostas em instrumentos legais são duas motivações que conduzem à necessidade de otimizar o serviço da recolha de resíduos. A otimização da recolha de resíduos é um problema de elevada complexidade de resolução que envolve a análise de redes de transporte. O presente trabalho propõe soluções de otimização da recolha de resíduos urbanos indiferenciados, a partir de um caso de estudo: o percurso RSU I 06 do município de Aveiro. Para este efeito, recorreu-se a uma aplicação informática de representação e análise geográfica: software ArcGIS denominada ArcMap e sua extensão Network Analyst, desenvolvida para calcular circuitos otimizados entre pontos de interesse. O trabalho realizado de aplicação do Network Analyst inclui a apresentação de duas das suas funcionalidades (Route e Vehicle Routing Problem). Em relação ao atual circuito de recolha e com base nos ensaios efetuados, foi possível concluir que esta aplicação permite obter circuitos de recolha otimizados mais curtos ou com menor duração. Contudo, ao nível da gestão permitiu concluir que, com a atual capacidade de contentorização, seria viável reduzir a frequência de recolha de seis vezes por semana para metade, dividindo a área de recolha em duas áreas, de acordo com as necessidades de cada local, reduzindo ainda mais o esforço de recolha. A aplicação do Network Analyst ao caso de estudo, permitiu concluir que é um software com muito interesse no processo de gestão da recolha de resíduos urbanos, apesar de apresentar algumas restrições de aplicação e que a qualidade/eficácia do procedimento de otimização depende da qualidade dos dados de entrada, em particular do descritivo geográfico disponível para os arruamentos e, em larga medida, também depende do modelo de gestão considerado.
O problema de alocação de berços: um estudo das heurísticas simulated annealing e algoritmo genético
Resumo:
Este trabalho apresenta um estudo de caso das heurísticas Simulated Annealing e Algoritmo Genético para um problema de grande relevância encontrado no sistema portuário, o Problema de Alocação em Berços. Esse problema aborda a programação e a alocação de navios às áreas de atracação ao longo de um cais. A modelagem utilizada nesta pesquisa é apresentada por Mauri (2008) [28] que trata do problema como uma Problema de Roteamento de Veículos com Múltiplas Garagens e sem Janelas de Tempo. Foi desenvolvido um ambiente apropriado para testes de simulação, onde o cenário de análise foi constituido a partir de situações reais encontradas na programação de navios de um terminal de contêineres. Os testes computacionais realizados mostram a performance das heurísticas em relação a função objetivo e o tempo computacional, a m de avaliar qual das técnicas apresenta melhores resultados.
Resumo:
This thesis presents approximation algorithms for some NP-Hard combinatorial optimization problems on graphs and networks; in particular, we study problems related to Network Design. Under the widely-believed complexity-theoretic assumption that P is not equal to NP, there are no efficient (i.e., polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient algorithms for such problems, it is necessary to consider approximate solutions: An approximation algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the problem, finds a solution whose value is guaranteed to be within a multiplicative factor of the value of an optimal solution to that instance. We attempt to design algorithms for which this factor, referred to as the approximation ratio of the algorithm, is as small as possible. The field of Network Design comprises a large class of problems that deal with constructing networks of low cost and/or high capacity, routing data through existing networks, and many related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices u,v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or edges leaves u and v connected. We focus on building networks that are highly connected, meaning that even if a small number of edges and nodes fail, the remaining nodes will still be able to communicate. A brief description of some of our results is given below. We study the problem of building 2-vertex-connected networks that are large and have low cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k) approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains. This pruning algorithm is simple and efficient, and is likely to find additional applications. Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity problems. We develop an algorithm that, given a graph with some vertices marked as terminals, significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals; in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many trees that each span a given terminal set, while being disjoint on edges and non-terminal vertices; such problems have applications in VLSI design and other areas. We also use this reduction algorithm to analyze simple algorithms for single-sink network design problems with high vertex-connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a given set of terminals to a common sink. We study similar problems in which different types of links, of varying capacities and costs, can be used to connect nodes; assuming there are economies of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth to simultaneously support flow from each terminal to the common sink along many vertex-disjoint paths. We further investigate capacitated network design, where edges may have arbitrary costs and capacities. Given a connectivity requirement R_uv for each pair of vertices u,v, the goal is to find a low-cost network which, for each uv, can support a flow of R_uv units of traffic between u and v. We study several special cases of this problem, giving both algorithmic and hardness results. In addition to Network Design, we consider certain Traveling Salesperson-like problems, where the goal is to find short walks that visit many distinct vertices. We give a (2 + epsilon)-approximation for Orienteering in undirected graphs, achieving the best known approximation ratio, and the first approximation algorithm for Orienteering in directed graphs. We also give improved algorithms for Orienteering with time windows, in which vertices must be visited between specified release times and deadlines, and other related problems. These problems are motivated by applications in the fields of vehicle routing, delivery and transportation of goods, and robot path planning.
Resumo:
The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.
Resumo:
The majority of research work carried out in the field of Operations-Research uses methods and algorithms to optimize the pick-up and delivery problem. Most studies aim to solve the vehicle routing problem, to accommodate optimum delivery orders, vehicles etc. This paper focuses on green logistics approach, where existing Public Transport infrastructure capability of a city is used for the delivery of small and medium sized packaged goods thus, helping improve the situation of urban congestion and greenhouse gas emissions reduction. It carried out a study to investigate the feasibility of the proposed multi-agent based simulation model, for efficiency of cost, time and energy consumption. Multimodal Dijkstra Shortest Path algorithm and Nested Monte Carlo Search have been employed for a two-phase algorithmic approach used for generation of time based cost matrix. The quality of the tour is dependent on the efficiency of the search algorithm implemented for plan generation and route planning. The results reveal a definite advantage of using Public Transportation over existing delivery approaches in terms of energy efficiency.
Resumo:
Part 21: Mobility and Logistics