960 resultados para coastal ecosystems
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.
Resumo:
Mangroves are diverse group of trees, palms, shrubs, and ferns that share a common ability to live in waterlogged saline soils exposed to regular flooding, and are highly specialised plants which have developed unusual adaptations to the unique environmental conditions. They are sites of accumulation and preservation of both allochthonous and autochthonous organic matter owing to their strategic loction at the interface between land and sea and prevailing reducing environment. They are among the most productive ecosystems and are efficient carbon sinks with most of the carbon stored in sediments.Mangrove ecosystems play a significant role in global carbon cycle and hence the knowledge on the processes controlling the delivery of organic matter to coastal sediments, and how these signatures are preserved in the sediment is a prerequisite for the understanding of biogeochemical cycles. The evaluation of nature and sources of organic matter can be accomplished by the determination of biochemical constituents like carbohydrates, proteins and lipids. When characterised at molecular level, lipids provide valuable information about the sources of organic matter, even though they account only small fraction of organic matter. They are useful for the paleo-environmental reconstruction because of their low reactivity, high preservation potential and high source specificity relative to other organic class of compounds. The application of recent analytical techniques has produced a wealth of useful information but has also indicated the gaps in our knowledge on cycling of organic matter in the coastal ecosystems. The quantity and quality of organic matter preserved in sediments vary depending up on the nature of material delivered to the sediment and on the depositional environment. The input from both autochthonous and allochthonous sources sharpens the complexity of biogeochemistry of mangrove ecosystem and hence bulk sedimentary parameters are not completely successful in evaluating the sources of organic matter in mangrove sediments. An effective tool for the source characterisation of organic matter in coastal ecosystems is biomarker approach. Biomarkers are chemical "signatures" present in environmental samples whose structural information can be linked to its biological precursor. The usefulness of molecular biomarkers depends on high taxonomic specificity, potential for preservation, recalcitrant against geochemical changes, easily analysable in environmental samples and should have a limited number of well-defined sources.
Resumo:
The chemical factors (inorganic nitrogen, phosphate, silicic acid) that potentially or actually control primary production were determined for the Bay of Brest, France, a macrotidal ecosystem submitted to high-nitrate-loaded freshwater inputs (winter nitrate freshwater concentrations >700 mu M, Si:N molar ratio as low as 0.2, i.e. among the lowest ever published). Intensive data collection and observations were carried out from February 1993 to March 1994 to determine the variations of physical [salinity, temperature, photosynthetically active radiation (PAR), freshwater discharges] and chemical (oxygen and nutrients) parameters and their impacts on the phytoplankton cycle (fluorescence, pigments, primary production). With insufficient PAR the winter stocks of nutrients were almost nonutilized and the nitrate excess was exported to the adjacent ocean, due to rapid tidal exchange. By early April, a diatom-dominated spring bloom developed (chlorophyll a maximum = 7.7 mu g l(-1); primary production maximum = 2.34 g C m(-2) d(-1)) under high initial nutrient concentrations. Silicic acid was rapidly exhausted over the whole water column; it is inferred to be the primary limiting factor responsible for the collapse of the spring bloom by mid-May. Successive phytoplankton developments characterized the period of secondary blooms during summer and fall (successive surface chlorophyll a maxima = 3.5, 1.6, 1.8 and 1.0 mu g l(-1); primary production = 1.24, 1.18 and 0.35 g C m(-2) d(-1)). Those secondary blooms developed under lower nutrient concentrations, mostly originating from nutrient recycling. Until August, Si and P most likely limited primary production, whereas the last stage of the productive period in September seemed to be N limited instead, this being a period of total nitrate depletion in almost the whole water column. Si limitation of spring blooms has become a common feature in coastal ecosystems that receive freshwater inputs with Si:N molar ratios <1. The peculiarity of Si Limitation in the Bay of Brest is its extension through the summer period.
Resumo:
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.
Resumo:
Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecem) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pumice is an extremely effective rafting agent that can dramatically increase the dispersal range of a variety of marine organisms and connect isolated shallow marine and coastal ecosystems. Here we report on a significant recent pumice rafting and long-distance dispersal event that occurred across the southwest Pacific following the 2006 explosive eruption of Home Reef Volcano in Tonga. We have constrained the trajectory, and rate, biomass and biodiversity of transfer, discovering more than 80 species and a substantial biomass underwent a .5000 km journey in 7–8 months. Differing microenvironmental conditions on the pumice, caused by relative stability of clasts at the sea surface, promoted diversity in biotic recruitment. Our findings emphasise pumice rafting as an important process facilitating the distribution of marine life, which have implications for colonisation processes and success, the management of sensitive marine environments, and invasive pest species.
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)
Resumo:
Future coastal management practices require that a holistic, ecosystem management approach be adopted. Coastal ecosystems, however, present a variety of specific and unique challenges relative to open ocean systems. In particular, interactions with the seabed significantly influence the coastal ecosystem. Observing technologies must be developed and employed to incorporate seafloor interactions, processes and habitat diversity into research and management activities. An ACT Workshop on Seabed Sensor Technology was held February 1-3, 2006 in Savannah, Georgia, to summarize the current state of sensor technologies applicable to examining and monitoring the coastal seabed, including the near-bed benthic boundary layer and surface sediment layer. Workshop participants were specifically charged to identify current sensors in use, recommend improvements to these systems and to identify areas for future development and activities that would advance the use of sensor technology in the observation, monitoring and management of the coastal benthic environment. (pdf contains 23 pages)
Resumo:
The aquarium trade and other wildlife consumers are at a crossroads forced by threats from global climate change and other anthropogenic stressors that have weakened coastal ecosystems. While the wildlife trade may put additional stress on coral reefs, it brings income into impoverished parts of the world and may stimulate interest in marine conservation. To better understand the influence of the trade, we must first be able to quantify coral reef fauna moving through it. Herein, we discuss the lack of a data system for monitoring the wildlife aquarium trade and analyze problems that arise when trying to monitor the trade using a system not specifically designed for this purpose. To do this, we examined an entire year of import records of marine tropical fish entering the United States in detail, and discuss the relationship between trade volume, biodiversity and introduction of non-native marine fishes. Our analyses showed that biodiversity levels are higher than previous estimates. Additionally, more than half of government importation forms have numerical or other reporting discrepancies resulting in the overestimation of trade volumes by 27%. While some commonly imported species have been introduced into the coastal waters of the USA (as expected), we also found that some uncommon species in the trade have also been introduced. This is the first study of aquarium trade imports to compare commercial invoices to government forms and provides a means to, routinely and in real time, examine the biodiversity of the trade in coral reef wildlife species.
Resumo:
Alterações na frequência e amplitude das inundações pelas marés são fatores reguladores da dinâmica das florestas de mangue. Tais alterações podem estar relacionadas à elevação do nível médio relativo do mar (NMRM), que vem sendo atribuída como fator de impacto decorrente das mudanças climáticas globais atuando sobre os ecossistemas costeiros. Durante a década de 90, o Núcleo de Estudos em Manguezais da Universidade do Estado do Rio de Janeiro observou, em Guaratiba (RJ), um processo de colonização de uma planície hipersalina por espécies de mangue, e começou a monitorá-lo. Após seis anos os dados indicaram a consolidação da colonização e juntamente com o desenvolvimento de outros estudos neste sistema, a elevação do NMRM foi atribuída como principal causa deste processo. Os dados gerados por tal monitoramento, de 1998 até o ano de 2011, constituem a base de dados da presente dissertação, que teve como objetivo analisar o desenvolvimento do processo de colonização e verificar suas relações com fatores meteorológicos locais. No ano de 1998 foram demarcadas seis parcelas justapostas, no sentido floresta-planície hipersalina, até onde era percebida a presença das plantas de mangue. Todos os indivíduos foram identificados com etiquetas numeradas e tiveram suas alturas medidas ao longo de todo monitoramento, da mesma forma que novos indivíduos (recrutas). Quando recrutas eram encontrados em áreas mais distantes da floresta, novas parcelas eram incluídas no monitoramento. No ano de 2011, a colonização já havia avançado 75 m de distância da floresta e as treze parcelas monitoradas indicaram diferentes estágios sucessionais: mais próximas à floresta apresentam consolidação do processo de colonização, com redução de densidade e maior desenvolvimento estrutural; intermediárias, com altas densidades, encontra-se em fase menos avançada da colonização; mais externas caracterizam o início da colonização da área por poucos indivíduos. Notou-se, ainda, que o processo de colonização se dá por meio do estabelecimento de coortes, que demonstram variabilidade nos padrões de desenvolvimento estrutural ao longo dos anos (densidade, distribuição e taxa de crescimento), relacionada às condições ambientais distintas (padrões climatológicos). Quanto à disponibilidade hídrica (entre 1985 e 2011), Guaratiba apresentou predomínio de déficit hídrico, com tendência de amenização ao final do período. Períodos de maior disponibilidade de água no sistema coincidiram com marcação de novas parcelas, bem como com picos de recrutamento e elevadas taxas de crescimento das coortes. Assim, foi possível observar que o desenvolvimento das coortes esteve relacionado às condições de disponibilidade de espaço e luz, além de responderem aos processos meteorológicos, relacionados à disponibilidade de água na região.
Resumo:
O Complexo Lagunar de Jacarepaguá, localizado no município do Rio de Janeiro, região sudeste do Brasil, é formado pelas lagunas de Jacarepaguá, Camorim, Tijuca e Marapendi. Estas lagunas estão interligadas ao mar pelo canal da Joatinga e têm como afluentes rios e canais que vertem dos maciços da Tijuca e da Pedra Branca. Recebem esgotos sanitários e efluentes industriais, além de contribuições difusas de águas de drenagem e circulação das massas de águas de várias origens, com elevada carga de poluição. A eutrofização cultural aliada aos processos de evolução de ecossistemas costeiros produziu um estado de degradação destas águas com constantes florações de cianobactérias potencialmente tóxicas. O presente estudo tem como objetivo avaliar a ocorrência das cianobactérias (Classe Cyanophyceae) no Complexo Lagunar de Jacarepaguá e corroborar a hipótese de serem boas indicadoras de qualidade ambiental de águas salobras. Foi realizado um monitoramento ambiental nas lagunas de Jacarepaguá, Camorim, Tijuca e Marapendi, nos anos de 2004 a 2006, sendo analisados parâmetros físicos, químicos e biológicos. Os resultados obtidos demonstraram a dominância e a persistência das cianobactérias em elevadas concentrações de nutrientes, caracterizando a hipereutrofização dessas lagunas. As estratégias ecológicas das cianobactérias garantiram sua dominância em quase todo o período amostral e demonstraram ser um refinado sensor das variáveis ambientais. A salinidade não foi um fator de limitação ao desenvolvimento desses microorganismos. Desta forma, este estudo, oferece subsídios para gestão de recursos hídricos, corroborando com a legislação CONAMA 357/05-MMA, na sugestão de indicação deste parâmetro de qualidade ambiental também para ambientes salobros na classe 1.
Resumo:
The Northeast Fisheries Science Center of NOAA's National Marine Fisheries Service has a long history of research on benthic invertebrates and habitats in support of the management of living marine resources. These studies began in the 1870's under Spencer F. Baird's guidance as part of an effort to characterize the Nation's fisheries and living marine resources and their ecological interactions. This century and a quarter of research has included many benthic invertebrate studies, including community characterizations, shellfish biology and culture, pathology, ecosystem energy budget modeling, habitat evaluations, assessments of human impacts, toxic chemical bioaccumulation in demersal food webs, habitat or endangered species management, benthic autecology, systematics (to define new species and species population boundaries), and other benthic studies. Here we review the scope of past and current studies as a background for strategic research planning and suggest areas for further research to support NOAA's goals of sustainable fisheries management, healthy coastal ecosystems, and protected species populations.
Resumo:
O objetivo do presente estudo foi investigar as concentrações de mercúrio total (HgT) nos músculos de Orthopristis ruber de quatro ecossitemas costeiros e identificar possíveis correlações existentes entre comprimento, peso, sexo, estação do ano e índices biológicos. O HgT foi analisado nas regiões de Cabo Frio (CF, n=31), Baía de Guanabara (BG, n=61), Baía de Sepetiba (BS, n=43) e Baía da Ilha Grande (BIG, n=32), as quais apresentam diferentes níveis de degradação ambiental. A BG recebe grande quantidade de efluentes domésticos e industriais de toda região metropolitana do Rio de Janeiro e tem sido considerada como uma das áreas mais poluídas do Brasil. Já na BS, a intensa atividade metalúrgica no seu entorno faz com que esta possa ser tida com nível de degradação intermadiária, enquanto CF e BIG são duas áreas vistas como áreas bem preservadas. As concentrações de HgT foram determinadas através de CV-AAS (FIMS - 400,Perkin Elmer) - utilizando boridreto de sódio como agente redutor. Foi utilizado DORM 3 (National Research Council, Canada) como material de referência (média da recuperação DP =99,2 4,9 %). As concentrações médias de HgT DP para BIG e CF foram, respectivamente, 209,8 118,9 ng/g, e 199,9 88,2 ng/g. Estas regiões apresentaram concentrações significativamente mais elevadas, enquanto a BG mostrou concentrações intermediárias (112,9 88,0 ng/g; ANCOVA, p<0,03). Por outro lado, a BS foi a região com as menores concentrações de HgT (11,3 11,5 ng/g). Tais resultados sugerem que, mesmo sendo áreas degradadas, o HgT não está totalmente biodisponível para BG e BS. Ademais, provavelmente as correntes oceânicas são uma fonte de mercúrio para CF e BIG, carreando mercúrio biodisponível para essas áreas. Para BG análises adicionais foram feitas a fim de identificar a acumulação de HgT ao longo do desenvolvimento ontogenético de O. ruber, uma vez que as concentrações do metal foram maiores em adultos do que em juvenis (PERMANOVA, p< 0,0001). As concentrações de HgT foram positivamente relacionadas tanto com o comprimento (Spearman test; r = 0,85; p <0,001) quanto com o peso (Spearman test; r =0,85; p <0,001) dos peixes da BG, mostrando que o O.ruber acumula HgT ao longo da vida. Diferenças entre sexos foram encontradas apenas para os O. ruber da BIG, onde fêmeas (300 ng/g) apresentaram maiores concentrações de HgT que os machos (~150 ng/g). Dentre os índices biológicos analisados, o índice gonadossomático foi o de maior relevância devido sua correlação negativa entre os níveis de HgT com todos os dados em conjunto (p<0.001), tanto para fêmeas (p<0.001) quanto para machos (p<0.02), sugerindo que o mercúrio pode afetar negativamente a reprodução de O.ruber.