698 resultados para cloud service providers
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organisations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organizations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
A report of key findings of the Cloud Library project, an effort jointly designed and executed by OCLC Research, the HathiTrust, New York University's Elmer Bobst Library, and the Research Collections Access & Preservation (ReCAP) consortium, with support from the The Andrew W. Mellon Foundation. The objective of the project was to examine the feasibility of outsourcing management of low-use print books held in academic libraries to shared service providers, including large-scale print and digital repositories.
Resumo:
Software-as-a-service (SaaS) is a type of software service delivery model which encompasses a broad range of business opportunities and challenges. Users and service providers are reluctant to integrate their business into SaaS due to its security concerns while at the same time they are attracted by its benefits. This article highlights SaaS utility and applicability in different environments like cloud computing, mobile cloud computing, software defined networking and Internet of things. It then embarks on the analysis of SaaS security challenges spanning across data security, application security and SaaS deployment security. A detailed review of the existing mainstream solutions to tackle the respective security issues mapping into different SaaS security challenges is presented. Finally, possible solutions or techniques which can be applied in tandem are presented for a secure SaaS platform.
Resumo:
Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting anomalies in Cloud data centre operation is vital. Given the vast complexity of the data centre system software stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting anomalies often use machine learning techniques, application instance behaviours or system metrics distribu- tion, which are complex to implement in Cloud computing environments as they require training, access to application-level data and complex processing. This paper presents LADT, a lightweight anomaly detection tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre- lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and evaluate LADT using a Cloud environment, where it shows that the hosting node I/O operations per second (IOPS) are strongly correlated with the aggregated virtual machine IOPS, but this correlation vanishes when an application stresses the disk, indicating a node-level anomaly.
Resumo:
Cloud computing is a new development that is based on the premise that data and applications are stored centrally and can be accessed through the Internet. Thisarticle sets up a broad analysis of how the emergence of clouds relates to European competition law, network regulation and electronic commerce regulation, which we relate to challenges for the further development of cloud services in Europe: interoperability and data portability between clouds; issues relating to vertical integration between clouds and Internet Service Providers; and potential problems for clouds to operate on the European Internal Market. We find that these issues are not adequately addressed across the legal frameworks that we analyse, and argue for further research into how to better facilitate innovative convergent services such as cloud computing through European policy – especially in light of the ambitious digital agenda that the European Commission has set out.
Resumo:
Multi-Cloud Applications are composed of services offered by multiple cloud platforms where the user/developer has full knowledge of the use of such platforms. The use of multiple cloud platforms avoids the following problems: (i) vendor lock-in, which is dependency on the application of a certain cloud platform, which is prejudicial in the case of degradation or failure of platform services, or even price increasing on service usage; (ii) degradation or failure of the application due to fluctuations in quality of service (QoS) provided by some cloud platform, or even due to a failure of any service. In multi-cloud scenario is possible to change a service in failure or with QoS problems for an equivalent of another cloud platform. So that an application can adopt the perspective multi-cloud is necessary to create mechanisms that are able to select which cloud services/platforms should be used in accordance with the requirements determined by the programmer/user. In this context, the major challenges in terms of development of such applications include questions such as: (i) the choice of which underlying services and cloud computing platforms should be used based on the defined user requirements in terms of functionality and quality (ii) the need to continually monitor the dynamic information (such as response time, availability, price, availability), related to cloud services, in addition to the wide variety of services, and (iii) the need to adapt the application if QoS violations affect user defined requirements. This PhD thesis proposes an approach for dynamic adaptation of multi-cloud applications to be applied when a service is unavailable or when the requirements set by the user/developer point out that other available multi-cloud configuration meets more efficiently. Thus, this work proposes a strategy composed of two phases. The first phase consists of the application modeling, exploring the similarities representation capacity and variability proposals in the context of the paradigm of Software Product Lines (SPL). In this phase it is used an extended feature model to specify the cloud service configuration to be used by the application (similarities) and the different possible providers for each service (variability). Furthermore, the non-functional requirements associated with cloud services are specified by properties in this model by describing dynamic information about these services. The second phase consists of an autonomic process based on MAPE-K control loop, which is responsible for selecting, optimally, a multicloud configuration that meets the established requirements, and perform the adaptation. The adaptation strategy proposed is independent of the used programming technique for performing the adaptation. In this work we implement the adaptation strategy using various programming techniques such as aspect-oriented programming, context-oriented programming and components and services oriented programming. Based on the proposed steps, we tried to assess the following: (i) the process of modeling and the specification of non-functional requirements can ensure effective monitoring of user satisfaction; (ii) if the optimal selection process presents significant gains compared to sequential approach; and (iii) which techniques have the best trade-off when compared efforts to development/modularity and performance.
Resumo:
Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.
Resumo:
Provenance plays a pivotal in tracing the origin of something and determining how and why something had occurred. With the emergence of the cloud and the benefits it encompasses, there has been a rapid proliferation of services being adopted by commercial and government sectors. However, trust and security concerns for such services are on an unprecedented scale. Currently, these services expose very little internal working to their customers; this can cause accountability and compliance issues especially in the event of a fault or error, customers and providers are left to point finger at each other. Provenance-based traceability provides a mean to address part of this problem by being able to capture and query events occurred in the past to understand how and why it took place. However, due to the complexity of the cloud infrastructure, the current provenance models lack the expressibility required to describe the inner-working of a cloud service. For a complete solution, a provenance-aware policy language is also required for operators and users to define policies for compliance purpose. The current policy standards do not cater for such requirement. To address these issues, in this paper we propose a provenance (traceability) model cProv, and a provenance-aware policy language (cProvl) to capture traceability data, and express policies for validating against the model. For implementation, we have extended the XACML3.0 architecture to support provenance, and provided a translator that converts cProvl policy and request into XACML type.
Resumo:
Despite the best intentions of service providers and organisations, service delivery is rarely error-free. While numerous studies have investigated specific cognitive, emotional or behavioural responses to service failure and recovery, these studies do not fully capture the complexity of the services encounter. Consequently, this research develops a more holistic understanding of how specific service recovery strategies affect the responses of customers by combining two existing models—Smith & Bolton’s (2002) model of emotional responses to service performance and Fullerton and Punj’s (1993) structural model of aberrant consumer behaviour—into a conceptual framework. Specific service recovery strategies are proposed to influence consumer cognition, emotion and behaviour. This research was conducted using a 2x2 between-subjects quasi-experimental design that was administered via written survey. The experimental design manipulated two levels of two specific service recovery strategies: compensation and apology. The effect of the four recovery strategies were investigated by collecting data from 18-25 year olds and were analysed using multivariate analysis of covariance and multiple regression analysis. The results suggest that different service recovery strategies are associated with varying scores of satisfaction, perceived distributive justice, positive emotions, negative emotions and negative functional behaviour, but not dysfunctional behaviour. These finding have significant implications for the theory and practice of managing service recovery.
Resumo:
There has been an extended engagement with how young people experience policing, with a focus on the intersection between policing and indigeneity, ethnicity, gender, and social class. Interestingly, sexuality and/or gender diversity has been almost completely overlooked, both nationally and internationally. This paper reports on LGBT youth service providers’ accounts about police and LGBT young people interactions. It overviews the outcomes of semi-structured interviews with key LGBT youth service providers in different regions of Brisbane, Queensland. As the first qualitative engagement with these issues from the perspective of service providers, it highlights not only how LGBT young people experience policing, but also how service providers need to ‘work the system’ of policing to produce the best outcomes for LGBT young people.
Resumo:
This position paper examines the development of a dedicated service aggregator role in business networks. We predict that these intermediaries will soon emerge in service ecosystems and add value through the application of dedicated domain knowledge in the process of creating new, innovative services or service bundles based on the aggregation, composition, integration or orchestration of existing services procured from different service providers in the service ecosystem. We discuss general foundations of service aggregators and present Fourth-Party Logistics Providers as a real-world example of emerging business service aggregators. We also point out a demand for future research, e.g. into governance models, risk management tools, service portfolio management approaches and service bundling techniques, to be able to better understand core determinants of competitiveness and success of service aggregators.