955 resultados para climate risk simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The state of the art in productivity measurement and analysis shows a gap between simple methods having little relevance in practice and sophisticated mathematical theory which is unwieldy for strategic and tactical planning purposes, -particularly at company level. An extension is made in this thesis to the method of productivity measurement and analysis based on the concept of added value, appropriate to those companies in which the materials, bought-in parts and services change substantially and a number of plants and inter-related units are involved in providing components for final assembly. Reviews and comparisons of productivity measurement dealing with alternative indices and their problems have been made and appropriate solutions put forward to productivity analysis in general and the added value method in particular. Based on this concept and method, three kinds of computerised models two of them deterministic, called sensitivity analysis and deterministic appraisal, and the third one, stochastic, called risk simulation, have been developed to cope with the planning of productivity and productivity growth with reference to the changes in their component variables, ranging from a single value 'to• a class interval of values of a productivity distribution. The models are designed to be flexible and can be adjusted according to the available computer capacity expected accuracy and 'presentation of the output. The stochastic model is based on the assumption of statistical independence between individual variables and the existence of normality in their probability distributions. The component variables have been forecasted using polynomials of degree four. This model is tested by comparisons of its behaviour with that of mathematical model using real historical data from British Leyland, and the results were satisfactory within acceptable levels of accuracy. Modifications to the model and its statistical treatment have been made as required. The results of applying these measurements and planning models to the British motor vehicle manufacturing companies are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Nino strengthens the Brewer-Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at similar to 25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introducción: La percepción puede ser considerada principalmente como un grupo de procesos internos en las personas que genera en los observadores una representación mental del entorno. Percibir es adelantarse al suceso, a lo que puede llegar a suceder, determinando lo que puede ser un peligro a nuestra seguridad y salud. Objetivo: El presente estudio tiene como objetivo determinar la percepción de los trabajadores acerca de la seguridad en el trabajo en áreas de procesos automatizados y mecánicas en una empresa del sector de gas natural en el departamento de Casanare, Colombia 2016. Metodología: Se llevó a cabo un estudio de corte transversal en 50 trabajadores de una empresa del sector de gas natural en Casanare. Se uttilizó el Cuestionario nórdico NOSACQ-50-Spanish, instrumento validado para evaluar la percepción acerca de la seguridad y salud en el lugar de trabajo. Se incluyeron variables sociodemográficas, laborales y las relacionadas con la percepción de la seguridad en el lugar del trabajo. Para el análsiis estadistico se calcularon medidas de tendencia central y de dispersión. El estudio de la percepción de seguridad tuvo como puntos de corte: < 2,5 mala percepción y > 2,5 buena percepción. Se emplearon pruebas de asociación X2 o test exacto de Fisher (valores esperados <5) y medidas de asociación OR con sus intervalos de confianza del 95% y se usaron modelos de regresión lineal. Resultados: El total de trabajadores fue de 50 personas, el 76% correspondió al sexo masculino y la mayor distribución se presentó en áreas mecánicas con 52% frente al 48% que se encontró en áreas automatizadas. Se halló asociación estadísticamente significativa entre las variables sociodemográficas área/sexo (Pr = 0,016), indicando que a los trabajadores de sexo femenino se les ubican en el área mecánica mientras que los de sexo masculino, laboran en todas las áreas sin darle relevancia al género. También se encontró asociación con las variables área/año de nacimiento (Pr =0.022), indicando que en el área automatizada se dejan profesionales con promedio de edad de 32 años, por el tipo de requisitos en competencias que exigen para ejecutar las labores. Para las demás variables ocupacionales que evaluaron la percepción de seguridad frente al trabajo, no se encontró asociación significativa. Conclusión: Los resultados permiten realizar acciones en pro de mejorar la percepción de los trabajadores dentro de la organización. Se podrán desarrollar programas de seguridad y salud en el trabajo, que respondan de manera efectiva a los peligros laborales detectados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent adoption of IFRS 9 is a highly disruptive accounting reform, with significant impacts on how and when negative news (i.e., negative adjustments to reported earnings) are recognized on the financial statements. Using a unique dataset of two major banks operating in one European country we provide evidence of a tightening of the corporate loans pricing after the IFRS 9 adoption. Furthermore, by focusing on the post reform period, we show that the tightening is driven by the new staging classification. Higher risk premiums are associated to clients with previous underperforming exposures (stage 2) and higher probability of default. We also observe that the staging classification is not affecting climate risk premiums. Our results highlight that the lenders, as expected by the regulation, change their risk appetite by charging higher spreads to discourage loan origination for clients that became too risky and expensive under the new standard.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Design summer years representing near-extreme hot summers have been used in the United Kingdom for the evaluation of thermal comfort and overheating risk. The years have been selected from measured weather data basically representative of an assumed stationary climate. Recent developments have made available ‘morphed’ equivalents of these years by shifting and stretching the measured variables using change factors produced by the UKCIP02 climate projections. The release of the latest, probabilistic, climate projections of UKCP09 together with the availability of a weather generator that can produce plausible daily or hourly sequences of weather variables has opened up the opportunity for generating new design summer years which can be used in risk-based decision-making. There are many possible methods for the production of design summer years from UKCP09 output: in this article, the original concept of the design summer year is largely retained, but a number of alternative methodologies for generating the years are explored. An alternative, more robust measure of warmth (weighted cooling degree hours) is also employed. It is demonstrated that the UKCP09 weather generator is capable of producing years for the baseline period, which are comparable with those in current use. Four methodologies for the generation of future years are described, and their output related to the future (deterministic) years that are currently available. It is concluded that, in general, years produced from the UKCP09 projections are warmer than those generated previously. Practical applications: The methodologies described in this article will facilitate designers who have access to the output of the UKCP09 weather generator (WG) to generate Design Summer Year hourly files tailored to their needs. The files produced will differ according to the methodology selected, in addition to location, emissions scenario and timeslice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Agricultural ecosystems and their associated business and government systems are diverse and varied. They range from farms, to input supply businesses, to marketing and government policy systems, among others. These systems are dynamic and responsive to fluctuations in climate. Skill in climate prediction offers considerable opportunities to managers via its potential to realise system improvements (i.e. increased food production and profit and/or reduced risks). Realising these opportunities, however, is not straightforward as the forecasting skill is imperfect and approaches to applying the existing skill to management issues have not been developed and tested extensively. While there has been much written about impacts of climate variability, there has been relatively little done in relation to applying knowledge of climate predictions to modify actions ahead of likely impacts. However, a considerable body of effort in various parts of the world is now being focused on this issue of applying climate predictions to improve agricultural systems. In this paper, we outline the basis for climate prediction, with emphasis on the El Nino-Southern Oscillation phenomenon, and catalogue experiences at field, national and global scales in applying climate predictions to agriculture. These diverse experiences are synthesised to derive general lessons about approaches to applying climate prediction in agriculture. The case studies have been selected to represent a diversity of agricultural systems and scales of operation. They also represent the on-going activities of some of the key research and development groups in this field around the world. The case studies include applications at field/farm scale to dryland cropping systems in Australia, Zimbabwe, and Argentina. This spectrum covers resource-rich and resource-poor farming with motivations ranging from profit to food security. At national and global scale we consider possible applications of climate prediction in commodity forecasting (wheat in Australia) and examine implications on global wheat trade and price associated with global consequences of climate prediction. In cataloguing these experiences we note some general lessons. Foremost is the value of an interdisciplinary systems approach in connecting disciplinary Knowledge in a manner most suited to decision-makers. This approach often includes scenario analysis based oil simulation with credible models as a key aspect of the learning process. Interaction among researchers, analysts and decision-makers is vital in the development of effective applications all of the players learn. Issues associated with balance between information demand and supply as well as appreciation of awareness limitations of decision-makers, analysts, and scientists are highlighted. It is argued that understanding and communicating decision risks is one of the keys to successful applications of climate prediction. We consider that advances of the future will be made by better connecting agricultural scientists and practitioners with the science of climate prediction. Professions involved in decision making must take a proactive role in the development of climate forecasts if the design and use of climate predictions are to reach their full potential. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seasonal climate forecasting offers potential for improving management of crop production risks in the cropping systems of NE Australia. But how is this capability best connected to management practice? Over the past decade, we have pursued participative systems approaches involving simulation-aided discussion with advisers and decision-makers. This has led to the development of discussion support software as a key vehicle for facilitating infusion of forecasting capability into practice. In this paper, we set out the basis of our approach, its implementation and preliminary evaluation. We outline the development of the discussion support software Whopper Cropper, which was designed for, and in close consultation with, public and private advisers. Whopper Cropper consists of a database of simulation output and a graphical user interface to generate analyses of risks associated with crop management options. The charts produced provide conversation pieces for advisers to use with their farmer clients in relation to the significant decisions they face. An example application, detail of the software development process and an initial survey of user needs are presented. We suggest that discussion support software is about moving beyond traditional notions of supply-driven decision support systems. Discussion support software is largely demand-driven and can compliment participatory action research programs by providing cost-effective general delivery of simulation-aided discussions about relevant management actions. The critical role of farm management advisers and dialogue among key players is highlighted. We argue that the discussion support concept, as exemplified by the software tool Whopper Cropper and the group processes surrounding it, provides an effective means to infuse innovations, like seasonal climate forecasting, into farming practice. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The contribution of the evapotranspiration from a certain region to the precipitation over the same area is referred to as water recycling. In this paper, we explore the spatiotemporal links between the recycling mechanism and the Iberian rainfall regime. We use a 9 km resolution Weather Research and Forecasting simulation of 18 years (1990-2007) to compute local and regional recycling ratios over Iberia, at the monthly scale, through both an analytical and a numerical recycling model. In contrast to coastal areas, the interior of Iberia experiences a relative maximum of precipitation in spring, suggesting a prominent role of land-atmosphere interactions on the inland precipitation regime during this period of the year. Local recycling ratios are the highest in spring and early summer, coinciding with those areas where this spring peak of rainfall represents the absolute maximum in the annual cycle. This confirms that recycling processes are crucial to explain the Iberian spring precipitation, particularly over the eastern and northeastern sectors. Average monthly recycling values range from 0.04 in December to 0.14 in June according to the numerical model and from 0.03 in December to 0.07 in May according to the analytical procedure. Our analysis shows that the highest values of recycling are limited by the coexistence of two necessary mechanisms: (1) the availability of sufficient soil moisture and (2) the occurrence of appropriate synoptic configurations favoring the development of convective regimes. The analyzed surplus of rainfall in spring has a critical impact on agriculture over large semiarid regions of the interior of Iberia.