946 resultados para climate effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate change affects on insect populations in many ways: it can cause a shift in geographical spread, abundance, or diversity, it can change the location, the timing and the magnitude of outbreaks of pests and it can define the phenological or even the genetic properties of the species. Long-time investigations of special insect populations, simulation models and scenario studies give us very important information about the response of the insects far away and near to our century. Getting to know the potential responses of insect populations to climate change makes us possible to evaluate the adaptation of pest management alternatives as well as to formulate our future management policy. In this paper we apply two simple models, in order to introduce a complex case study for a Sycamore lace bug population. We test how the model works in case the whether conditions are very different from those in our days. Thus, besides we can understand the processes that happen in present, we can analyze the effects of a possible climate change, as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our study intended to explore the potential distributionshif of Phlebotomusariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. We used climate envelope modeling (CEM) method to determine the ecological requirements of the species and to model the potential distribution for three periods (1961-1990, 2011-2040, and 2041- 2070). We found that by the end of the 2060’s the Southern UK, Germany, entire France and also the western part of Poland can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasishowe the greatest potential northward expansion, from 49°N to 59°N. For all of the studied sand fly species the entire Mediterranean Basin, the Balkan Peninsula, the Carpathian Basin, and northern coastline of the Black Sea are potentially suitable. The length of the predicted active period of the vectors will increase with one or two months.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leishmaniasis is one of the most important emerging vector-borne diseases in Western Eurasia. Although winter minimum temperatures limit the present geographical distribution of the vector Phlebotomus species, the heat island effect of the cities and the anthropogenic heat emission together may provide the appropriate environment for the overwintering of sand flies. We studied the climate tempering effect of thermal bridges and the heat island effect in Budapest, Hungary. Thermal imaging was used to measure the heat surplus of heat bridges. The winter heat island effect of the city was evaluated by numerical analysis of the measurements of the Aqua sensor of satellite Terra. We found that the surface temperature of thermal bridges can be at least 3-7 °C higher than the surrounding environment. The heat emission of thermal bridges and the urban heat island effect together can cause at least 10 °C higher minimum ambient temperature in winter nights than the minimum temperature of the peri-urban areas. This milder micro-climate of the built environment can enable the potential overwintering of some important European Phlebotomus species. The anthropogenic heat emission of big cities may explain the observed isolated northward populations of Phlebotomus ariasi in Paris and Phlebotomus neglectus in the agglomeration of Budapest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Roads represent a new source of mortality due to animal-vehicle risk of collision threatening log-term populations’ viability. Risk of road-kill depends on species sensitivity to roads and their specific life-history traits. The risk of road mortality for each species depends on the characteristics of roads and bioecological characteristics of the species. In this study we intend to know the importance of climatic parameters (temperature and precipitation) together with traffic and life history traits and understand the role of drought in barn owl population viability, also affected by road mortality in three scenarios: high mobility, high population density and the combination of previous scenarios (mixed) (Manuscript). For the first objective we correlated the several parameters (climate, traffic and life history traits). We used the most correlated variables to build a predictive mixed model (GLMM) the influence of the same. Using a population model we evaluated barn owl population viability in all three scenarios. Model revealed precipitation, traffic and dispersal have negative relationship with road-kills, although the relationship was not significant. Scenarios showed different results, high mobility scenario showed greater population depletion, more fluctuations over time and greater risk of extinction. High population density scenario showed a more stable population with lower risk of extinction and mixed scenario showed similar results as first scenario. Climate seems to play an indirect role on barn owl road-kills, it may influence prey availability which influences barn owl reproductive success and activity. Also, high mobility scenario showed a greater negative impact on viability of populations which may affect their ability and resilience to other stochastic events. Future research should take in account climate and how it may influence species life cycles and activity periods for a more complete approach of road-kills. Also it is important to make the best mitigation decisions which might include improving prey quality habitat.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title of Dissertation: THE EFFECT OF SCHOOL CLIMATE (STUDENT AND TEACHER ENGAGEMENT) ON STUDENT PERFORMANCE Kenneth L. Marcus, Doctor of Education, 2016 Directed By: Dr. Thomas Davis, Assistant Professor, Education Policy and Leadership, Department of Teaching and Learning, Policy and Leadership This quantitative research study was designed to compute correlations/relationships of student engagement and student achievement of fifth grade students. Secondary information was collected on the relationship of FARMS, type of school, hope, and well-being on student achievement. School leaders are charged with ensuring that students achieve academically and demonstrate their ability by meeting identified targets on state and district mandated assessments. Due to increased pressure to meet targets, principals implement academic interventions to improve student learning and overlook the benefits of a positive school climate. This study has provided information on the impact of school climate on student achievement. To conduct this study, the researcher collected two sets of public fifth grade data (Gallup Survey student engagement scores and DSA reading, mathematics, and science scores) to determine the relationship of student performance and school climate. Secondary data were also collected on teacher engagement and the percentage of students receiving FARMS to determine the effect on students. The findings from this study reinforced the belief that school climate can have a positive effect on student achievement. This study contributed quantitative data about the relationship between school climate and school achievement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About this book: Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including:key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity,ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate.The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% +/- 0.06 and 97% +/- 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% 0.06 and 17% +/- 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% +/- 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr(-1) or 0.1 to 0.9 Mg C ha(-1) yr(-1), depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenges of climate change pose problems requiring new and innovative legal responses by legal practitioners, government officials and corporate officers. This book addresses a broad range of topic areas where climate change has impact and systematically analyses the key legal responses to climate change, both at the international level and within Australia at federal, State and local levels. In particular, it critically examines: •the rights, duties and market mechanisms established under the international climate change regime •the effect of climate change policies on the implementation of environmental and planning laws •new regimes for the implementation of renewable energy and energy efficiency initiatives •legal frameworks for the implementation of biological and geological sequestration projects (including forest projects and carbon rights); and •legal principles for the design of an effective carbon trading scheme for Australia It also considers the role of the common law including: •the likely response of the law of torts to emerging forms of climate change harm; and •potential liabilities for professionals who must take climate change into account in their decision-making and advice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) −1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The relationship between temperature and mortality has been explored for decades and many temperature indicators have been applied separately. However, few data are available to show how the effects of different temperature indicators on different mortality categories, particularly in a typical subtropical climate. OBJECTIVE: To assess the associations between various temperature indicators and different mortality categories in Brisbane, Australia during 1996-2004. METHODS: We applied two methods to assess the threshold and temperature indicator for each age and death groups: mean temperature and the threshold assessed from all cause mortality was used for all mortality categories; the specific temperature indicator and the threshold for each mortality category were identified separately according to the minimisation of AIC. We conducted polynomial distributed lag non-linear model to identify effect estimates in mortality with one degree of temperature increase (or decrease) above (or below) the threshold on current days and lagged effects using both methods. RESULTS: Akaike's Information Criterion was minimized when mean temperature was used for all non-external deaths and deaths from 75 to 84 years; when minimum temperature was used for deaths from 0 to 64 years, 65-74 years, ≥ 85 years, and from the respiratory diseases; when maximum temperature was used for deaths from cardiovascular diseases. The effect estimates using certain temperature indicators were similar as mean temperature both for current day and lag effects. CONCLUSION: Different age groups and death categories were sensitive to different temperature indicators. However, the effect estimates from certain temperature indicators did not significantly differ from those of mean temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water uptake refers to the ability of atmospheric particles to take up water vapour from the surrounding atmosphere. This is an important property that affects particle size and phase and therefore influences many characteristics of aerosols relevant to air quality and climate. However, the water uptake properties of many important atmospheric aerosol systems, including those related to the oceans, are still not fully understood. Therefore, the primary aim of this PhD research program was to investigate the water uptake properties of marine aerosols. In particular, the effect of organics on marine aerosol water uptake was investigated. Field campaigns were conducted at remote coastal sites on the east coast of Australia (Agnes Water; March-April 2007) and west coast of Ireland (Mace Head; June 2007), and laboratory measurements were performed on bubble-generated sea spray aerosols. A combined Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was employed in all experiments. This system probes the changes in the hygroscopic properties of nanoparticles as volatile organic components are progressively evaporated. It also allows particle composition to be inferred from combined volatility-hygroscopicity measurements. Frequent new particle formation and growth events were observed during the Agnes Water campaign. The VH-TDMA was used to investigate freshly nucleated particles (17-22.5 nm) and it was found that the condensation of sulphate and/or organic vapours was responsible for driving particle growth during the events. Aitken mode particles (~40 nm) were also measured with the VH-TDMA. In 3 out of 18 VH-TDMA scans evaporation of a volatile, organic component caused a very large increase in hygroscopicity that could only be explained by an increase in the absolute water uptake of the particle residuals, and not merely an increase in their relative hygroscopicity. This indicated the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). It was suggested that the suppression of water uptake was caused by either a reduced rate of hygroscopic growth due to the presence of organic films, or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity. Mixed organic-inorganic particles were rarely observed by the VH-TDMA during the summer campaign conducted at Mace Head. The majority of particles below 100 nm in clean, marine air appeared to be sulphates neutralised to varying degrees by ammonia. On one unique day, 26 June 2007, particularly large concentrations of sulphate aerosol were observed and identified as volcanic emissions from Iceland. The degree of neutralisation of the sulphate aerosol by ammonia was calculated by the VH-TDMA and found to compare well with the same quantity measured by an aerosol mass spectrometer. This was an important verification of the VH-TMDA‘s ability to identify ammoniated sulphate aerosols based on the simultaneous measurement of aerosol volatility and hygroscopicity. A series of measurements were also conducted on sea spray aerosols generated from Moreton Bay seawater samples in a laboratory-based bubble chamber. Accumulation mode sea spray particles (38-173 nm) were found to contain only a minor organic fraction (< 10%) that had little effect on particle hygroscopicity. These results are important because previous studies have observed that accumulation mode sea spray particles are predominantly organic (~80% organic mass fraction). The work presented here suggests that this is not always the case, and that there may be currently unknown factors that are controlling the transfer of organics to the aerosol phase during the bubble bursting process. Taken together, the results of this research program have significantly improved our understanding of organic-containing marine aerosols and the way they interact with water vapour in the atmosphere.