946 resultados para cis-4-decenoic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. Patients with FH deficiency have a higher risk for development of infections and kidney diseases because of the uncontrolled activation and subsequent depletion of the central regulatory component C3 of the complement system. In this study, we investigated the consequences of the Arg(127)His mutation in FH (FHR127H) previously described in an FH-deficient patient, on the secretion of this protein by skin fibroblasts in vitro. We observed that, although the patient cells stimulated with IFN-gamma were able to synthesize FHR127H, the mutant protein was largely retained within the endoplasmic reticulum (ER), whereas normal human fibroblasts stimulated with IFN-gamma secrete FH without retention in the ER. Moreover, the retention of FHR127H provoked enlargement of ER cisterns after treatment with IFN-gamma. A similar ER retention was observed in Cos-7 cells expressing the mutant FHR127H protein. Despite this deficiency in secretion, we show that the FHR127H mutant is capable of functioning as a cofactor in the Factor I-mediated cleavage of C3. We then evaluated whether a treatment could increase the secretion of FH, and observed that the patient's fibroblasts treated with the chemical chaperones 4-phenylbutiric acid or curcumin increased the secretion rate of FH. We propose that these chemical chaperones could be used as alternative therapeutic agents to increase FH plasma levels in FH-deficient patients caused by secretion delay of this regulatory protein. The Journal of Immunology, 2012, 189: 3242-3248.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global long-term potentiation (LTP) was induced in organotypic hippocampal slice cultures by a brief application of 10 mM glycine. Glycine-induced LTP was occluded by previous theta burst stimulation-induced potentiation, indicating that both phenomena share similar cellular processes. Glycine-induced LTP was associated with increased [3H]α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) binding in membrane fractions as well as increased amount of a selective spectrin breakdown product generated by calpain-mediated spectrin proteolysis. Antibodies against the C-terminal (C-Ab) and N-terminal (N-Ab) domains of GluR1 subunits were used to evaluate structural changes in AMPA receptor properties resulting from glycine-induced LTP. No quantitative or qualitative changes were observed in Western blots from membrane fractions prepared from glycine-treated slices with C-Ab. In contrast, Western blots stained with N-Ab revealed the formation of a 98-kDa species of GluR1 subunits as well as an increased amount of immunoreactivity after glycine-induced LTP. The amount of spectrin breakdown product was positively correlated with the amount of the 98-kDa species of GluR1 after glycine treatment. Functional modifications of AMPA receptors were evaluated by determining changes in the effect of pressure-applied AMPA on synaptic responses before and after glycine-induced LTP. Glycine treatment produced a significant increase in AMPA receptor function after potentiation that correlated with the degree of potentiation. The results indicate that LTP induction produces calpain activation, truncation of the C-Ab domain of GluR1 subunits of AMPA receptors, and increased AMPA receptor function. They also suggest that insertion of new receptors takes place after LTP induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that lack the glutamate receptor GluR2 subunit are Ca(2+)-permeable and exhibit inwardly rectifying current responses to kainate and AMPA. A proportion of cultured rat hippocampal neurons show similar Ca(2+)-permeable inwardly rectifying AMPA receptor currents. Inward rectification in these neurons was lost with intracellular dialysis and was not present in excised outside-out patches but was maintained in perforated-patch whole-cell recordings, suggesting that a diffusible cytoplasmic factor may be responsible for rectification. Inclusion of the naturally occurring polyamines spermine and spermidine in the recording pipette prevented loss of rectification in both whole-cell and excised-patch recordings; Mg2+ and putrescine were without effect. Inward rectification of Ca(2+)-permeable AMPA receptors may reflect voltage-dependent channel block by intracellular polyamines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The responses to rapid application of gamma-aminobutyric acid (GABA) and the GABA receptor characteristics of MTXO neurosecretory cells in the eyestalks of Chinese mitten-handed crab (Eriocheir sinensis) were examined by whole-cell patch clamp. Under current clamp mode, the depolarization and hyperpolarization were evoked from the three types of neurosecretory cells in response to the GABA (0.1 mmol/L) depending on the Nernst Cl- potential. Under voltage clamp mode, the inward Cl- channel currents (I-GABA) were resolved from all three types of neurosecretory cells in response to GABA (0.01similar to5 mmol/L). The GABA currents were activated within 1 200 ms and peaked within 800 ms. No obviously desensitization was observed during GABA application. The dose-response curve showed usual S-shape, with a just-discernible effect at 0.01 mmol/L and near-saturation at 0.5 mmol/L. The GABA currents had reversal potentials that followed Nernst Cl- potentials when [Cl-] was varied. The pharmacological results revealed that the GABA receptor of the crab neurosecretory cells was sensitive to the Cl- channel blockers picrotoxin and niflumic acid (0.5 mmol/L), insensitive to GABA(A) receptor antagonist bicuculline and GABA(C) receptor agonist cis-4-aminocrotonic acid (CACA 1 mmol/L) and trans-4-aminocrotonic (TACA 1 mmol/L).