995 resultados para chronic lymphocytic leukaemia
Resumo:
Leukemic B-chronic lymphoproliferative disorders (B-CLPDs) are generally believed to derive from a monoclonal B cell; biclonality has only occasionally been reported. In this study, we have explored the incidence of B-CLPD cases with 2 or more B-cell clones and established both the phenotypic differences between the coexisting clones and the clinicobiologic features of these patients. In total, 53 B-CLPD cases with 2 or more B-cell clones were studied. Presence of 2 or more B-cell clones was suspected by immunophenotype and confirmed by molecular/genetic techniques in leukemic samples (n = 42) and purified B-cell subpopulations (n = 10). Overall, 4.8% of 477 consecutive B-CLPDs had 2 or more B-cell clones, their incidence being especially higher among hairy cell leukemia (3 of 13), large cell lymphoma (2 of 10), and atypical chronic lymphocytic leukemia (CLL) (4 of 29). In most cases the 2 B-cell subsets displayed either different surface immunoglobulin (sIg) light chain (n = 37 of 53) or different levels of the same sIg (n = 9 of 53), usually associated with other phenotypic differences. Compared with monoclonal cases, B-CLL patients with 2 or more clones had lower white blood cell (WBC) and lymphocyte counts, more frequently displayed splenomegaly, and required early treatment. Among these, the cases in which a CLL clone coexisted with a non-CLL clone were older and more often displayed B symptoms, a monoclonal component, and diffuse infiltration of bone marrow and required early treatment more frequently than cases with monoclonal CLL or 2 CLL clones.
Resumo:
Protease-activated receptor 1 (PAR-1) is a G-protein-coupled receptor that is overexpressed in solid tumors, being associated with several pro-tumoral responses including primary growth, invasion, metastasis and angiogenesis. Expression of PAR-1 in human leukemic cell lines is reported but the status of its expression in human leukemic patients is currently unknown. In this study we evaluated the expression pattern of PAR-1 in patients with the four main types of leukemia - chronic lymphocytic leukemia subtype B (B-CLL), acute lymphoblastic leukemia subtype B (B-ALL), acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Flow cytometry analyses show that lymphocytes from B-CLL patients express this receptor at similar levels to healthy individuals. On the other hand, it was observed a significant increase in PAR-1 expression in B-ALL lymphocytes as compared to B-CLL and healthy donors. Flow cytometric and real-time PCR demonstrated a significant increase in PAR-1 expression in granulocytes from CML patients in blast phase (CML-BP) but not in chronic phase (CML-CP) as compared to healthy donors. Finally, a significant increase in PAR-1 expression has been also observed in blasts from AML (subtypes M4 and M5) patients, as compared to monocytes or granulocytes from healthy donors. We conclude that PAR-1 might play an important biological role in aggressive leukemias and might offer additional strategies for the development of new therapies. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Indole-3-acetic acid (IAA), when oxidized by horseradish peroxidase (HRP), is transformed into cytotoxic molecules capable of inducing cell injury. The aim of this study was to test if, by targeting hematopoietic tumors with HRP-conjugated antibodies in association with IAA treatment, there is induction of apoptosis. We used two lineages of hematologic tumors: NB4, derived from acute promyelocytic leukemia (APL) and Granta-519 from mantle cell lymphoma (MCL). We also tested cells from 12 patients with acute myeloid leukemia (AML) and from 10 patients with chronic lymphocytic leukemia (CLL). HRP targeting was performed with anti-CD33 or anti-CD19 antibodies (depending on the origin of the cell), followed by incubation with goat anti-mouse antibody conjugated with HRP. Eight experimental groups were analyzed: control, HRP targeted, HRP targeted and incubated with 1, 5 and 10 mM IAA, and cells not HRP targeted but incubated with 1, 5 and 10 mM IAA. Apoptosis was analyzed by flow cytometry using annexin V-FITC and propidium iodide labeling. Results showed that apoptosis was dependent on the dose of IAA utilized, the duration of exposure to the prodrug and the origin of the neoplasia. Targeting HRP with antibodies was efficient in activating IAA and inducing apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To identify novel genes involved in the molecular pathogenesis of chronic lymphocytic leukemia (CLL) we performed a serial analysis of gene expression (SAGE) in CLL cells, and compared this with healthy B cells (nCD19(+)). We found a high level of similarity among CLL subtypes, but a comparison of CLL versus nCD19(+) libraries revealed 55 genes that were over-represented and 49 genes that were down-regulated in CLL. A gene ontology analysis revealed that TOSO, which plays a functional role upstream of Fas extrinsic apoptosis pathway, was over-expressed in CLL cells. This finding was confirmed by real-time reverse transcription-polymerase chain reaction in 78 CLL and 12 nCD19(+) cases (P <.001). We validated expression using flow cytometry and tissue microarray and demonstrated a 5.6-fold increase of TOSO protein in circulating CLL cells (P =.013) and lymph nodes (P =.006). Our SAGE results have demonstrated that TOSO is a novel overexpressed antiapoptotic gene in CLL.
Resumo:
Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 30 untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. (C) 2010 Wiley-Liss, Inc.
Resumo:
The objective of the present study was to determine the prevalence of the intestinal parasites most commonly found in immunocompromised patients. A group of 111 individuals with acute lymphoid leukaemia (ALL), chronic myeloid leukaemia (CML), human immunodeficiency virus (HIV) and other immunocompromised conditions (principally haematological disorders) was selected. A battery of tests was performed on each individual to identify the presence of parasites (three stool specimens with saline solution and Lugol both directly and by concentration, culture and special staining). No significant differences were found among the frequencies of the different parasites with the several types of immunocompromised conditions. The overall frequencies of potentially pathogenic and opportunistic parasites were 32.4% (36/111) and 9% (10/111) respectively, the most frequently encountered among the latter being Cryptosporidium sp., Microsporidia spp. and Strongyloides stercoralis.
Resumo:
The increased frequency and dissemination of enterobacteria resistant to various antimicrobials is currently worldwide concern. In January 2010, a 94-year-old patient with chronic lymphocytic leukemia was admitted to the University Hospital. This patient died 21 days after hospitalization due to the clinical worsening. Klebsiella pneumoniae producing of extended-spectrum β-lactamases (ESBLs) was isolated of urine culture. This bacterium demonstrated resistance to ceftazidime, ciprofloxacin, levofloxacin, ertapenem and imipenem. Susceptibility to cefoxitin, cefepime, meropenem, colistin and tigecycline. This study reports the first case of infection by Klebsiella pneumoniae carrying the bla kpc gene in the State of Mato Grosso do Sul, Brazil.
Resumo:
Purpose: While imatinib has revolutionized the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumors (GIST), its pharmacokinetic-pharmacodynamic relationships have been poorly studied. This study aimed to explore the issue in oncologic patients, and to evaluate the specific influence of the target genotype in a GIST subpopulation. Patients and methods: Data from 59 patients (321 plasma samples) were collected during a previous pharmacokinetic study. Based on a population model purposely developed, individual post-hoc Bayesian estimates of pharmacokinetic parameters were derived, and used to estimate drug exposure (AUC; area under curve). Free fraction parameters were deduced from a model incorporating plasma alpha1-acid glycoprotein levels. Associations between AUC (or clearance) and therapeutic response (coded on a 3-point scale), or tolerability (4-point scale), were explored by ordered logistic regression. Influence of KIT genotype on response was also assessed in GIST patients. Results: Total and free drug exposure correlated with the number of side effects (p < 0.005). A relationship with response was not evident in the whole patient set (with good-responders tending to receive lower doses and bad-responders higher doses). In GIST patients however, higher free drug exposure predicted better responses. A strong association was notably observed in patients harboring an exon 9 mutation or a wild type KIT, known to decrease tumor sensitivity towards imatinib (p < 0.005). Conclusions: Our results are arguments to further evaluate the potential benefit of a therapeutic monitoring program for imatinib. Our data also suggest that stratification by genotype will be important in future trials.
Resumo:
APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.
Resumo:
PURPOSE: To report the case of a patient with undiagnosed Hodgkin's lymphoma who presented with coexistent unilateral nodular episcleritis and scleritis. DESIGN: Interventional case report and literature review METHODS: Review of clinical history, laboratory findings, histology of episcleral and cervical lymph node biopsies, and follow-up. RESULTS: A 20-year-old female presented with a 5-month history of redness and pain in her left eye, with associated symptoms of dyspnea, malaise, and fever. The patient was found to have multifocal nodular episcleritis and scleritis that was not responsive to topical steroids or systemic nonsteroidal anti-inflammatory treatment. Laboratory tests subsequently revealed evidence of systemic inflammation, and radiologic studies showed extensive mediastinal and cervical adenopathy. A cervical lymph node biopsy showed Reed-Sternberg cells and a chronic lymphocytic infiltrate consistent with nodular sclerosing Hodgkin's lymphoma. Histopathologic analysis of an episcleral nodule revealed a necrotizing granuloma with vasculitis. Systemic chemotherapy was instituted for the Hodgkin's disease; this therapy abolished the nodular scleritis. CONCLUSIONS: This case raises the possibility of concurrent undiagnosed systemic vasculitis with only an ocular manifestation with Hodgkin's lymphoma, either as a coincidence or as a paraneoplastic syndrome. Moreover, it emphasizes the important role of tissue biopsy in establishing diagnosis and directing treatment.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). However, the treatment must be taken indefinitely and is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene), and is also bound to the alpha1-acid glycoprotein (AAG) in plasma. Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations were measured in 59 patients receiving Glivec® at diverse dosage regimens, using a validated chromatographic method developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one-compartment model with first-order absorption described the data appropriately, with an average apparent clearance of 12.4 l/h, a volume of distribution of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T and the AAG phenotype appears to modulate the disposition of imatinib. Large inter-individual variability (CV %) remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen. This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help in individualising the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
Imatinib, a drug used for treatment of human chronic myeloid leukaemia, due to its activity against protein kinases, has been also evaluated in vitro against Schistosoma mansoni showing high schistosomicidal activity. In the present experiments imatinib activity in vitro was confirmed at the doses of 25 µM, 50 µM and 100 µM. The first drug activity observed with the lower dose was interruption of egg-laying and with the higher dosages was the death of the worms. In mice infected with S. mansoni no activity was found even with 1,000 mg/kg/day, 500 mg/kg/day, single oral dose or when administered for three consecutive days. This is another example of the difference of results related to in vitro and in vivo trials using S. mansoni worms.
Resumo:
Imatinib has revolutionised the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GIST). Using a nonlinear mixed effects population model, individual estimates of pharmacokinetic parameters were derived and used to estimate imatinib exposure (area under the curve, AUC) in 58 patients. Plasma-free concentration was deduced from a model incorporating plasma levels of alpha(1)-acid glycoprotein. Associations between AUC (or clearance) and response or incidence of side effects were explored by logistic regression analysis. Influence of KIT genotype was also assessed in GIST patients. Both total (in GIST) and free drug exposure (in CML and GIST) correlated with the occurrence and number of side effects (e.g. odds ratio 2.7+/-0.6 for a two-fold free AUC increase in GIST; P<0.001). Higher free AUC also predicted a higher probability of therapeutic response in GIST (odds ratio 2.6+/-1.1; P=0.026) when taking into account tumour KIT genotype (strongest association in patients harbouring exon 9 mutation or wild-type KIT, known to decrease tumour sensitivity towards imatinib). In CML, no straightforward concentration-response relationships were obtained. Our findings represent additional arguments to further evaluate the usefulness of individualizing imatinib prescription based on a therapeutic drug monitoring programme, possibly associated with target genotype profiling of patients.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastro-intestinal stromal tumour (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occur in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after latest dose, were measured in 59 patients receiving Glivec® at diverse regimens, using a validated chromatographic method (HPLC-UV) developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one- compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T appears to affect the disposition of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen ! This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help to individualise the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
AIMS: The aims of this observational study were to assess the variability in imatinib pharmacokinetics and to explore the relationship between its disposition and various biological covariates, especially plasma alpha1-acid glycoprotein concentrations. METHODS: A population pharmacokinetic analysis was performed using NONMEM based on 321 plasma samples from 59 patients with either chronic myeloid leukaemia or gastrointestinal stromal tumours. The influence of covariates on oral clearance and volume of distribution was examined. Furthermore, the in vivo intracellular pharmacokinetics of imatinib was explored in five patients. RESULTS: A one-compartment model with first-order absorption appropriately described the data, giving a mean (+/-SEM) oral clearance of 14.3 l h-1 (+/-1.0) and a volume of distribution of 347 l (+/-62). Oral clearance was influenced by body weight, age, sex and disease diagnosis. A large proportion of the interindividual variability (36% of clearance and 63% of volume of distribution) remained unexplained by these demographic covariates. Plasma alpha1-acid glycoprotein concentrations had a marked influence on total imatinib concentrations. Moreover, we observed an intra/extracellular ratio of 8, suggesting substantial uptake of the drug into the target cells. CONCLUSION: Because of the high pharmacokinetic variability of imatinib and the reported relationships between its plasma concentration and efficacy and toxicity, the usefulness of therapeutic drug monitoring as an aid to optimizing therapy should be further investigated. Ideally, such an approach should take account of either circulating alpha1-acid glycoprotein concentrations or free imatinib concentrations.