1000 resultados para chlorite smectite
Resumo:
Authigenic illite-smectite and chlorite in reservoir sandstones from several Pacific rim sedimentary basins in Australia and New Zealand have been examined using an Electroscan Environmental Scanning Electron Microscope (ESEM) before, during, and after treatment with fresh water and HCl, respectively. These dynamic experiments are possible in the ESEM because, unlike conventional SEMs that require a high vacuum in the sample chamber (10-6 torr), the ESEM will operate at high pressures up to 20 torr. This means that materials and processes can be examined at high magnifications in their natural states, wet or dry, and over a range of temperatures (-20 to 1000 degrees C) and pressures. Sandstones containing the illite-smectite (60-70% illite interlayers) were flushed with fresh water for periods of up to 12 hours. Close examination of the same illite-smectite lines or filled pores, both before and after freshwater treatments, showed that the morphology of the illite-smectite was not changed by prolonged freshwater treatment. Chlorite-bearing sandstones (Fe-rich chlorite) were reacted with 1M to 10M HCl at temperatures of up to 80 degrees C and for periods of up to 48 hours. Before treatment the chlorites showed typically platy morphologies. After HCl treatment the chlorite grains were coated with an amorphous gel composed of Ca, Cl, and possibly amorphous Si, as determined by EDS analyses on the freshly treated rock surface. Brief washing in water removed this surface coating and revealed apparently unchanged chlorite showing no signs of dissolution or acid attack. However, although the chlorite showed no morphological changes, elemental analysis only detected silicon and oxygen.
Resumo:
The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions. (C) 1993 Wiley-Liss, Inc.
Resumo:
The effect of HCl on authigenic chlorite in three different sandstones has been examined uisng an Environmental Scanning Electron Microscope (ESEM), together with conventional analytical techniques. The ESEM enabled chlorites to be directly observed in situ at high magnifications during HCl treatment, and was particularly effective in allowing the same chlorite areas to be closely compared before and after acid treatment. Chlorites were reacted with 1M to 10M HCl at temperatures up to 80°C and for periods up to five months. After all treatments, chlorites show extensive leaching of iron, magnesium and aluminum, and their crystalline structure is destroyed. However, despite these major compositional and structural changes, chlorites show little or no visible evidence of acid attack, with precise morphological detail of individual plates preserved in all samples following acid treatments. Chlorite dissolution, sensu stricto, did not occur as a result of acidization of the host sandstones. Acid-treated chlorides are likely to exits in a structurally weakened state that may make them susceptible to physical disintegration during fluid flow. Accordingly, fines migration may be a significant engineering problem associated with the acidization of chlorite-bearing sandstones. © 1993.
Resumo:
The water sensitivity of authigenic smectite- and illite-rich illite/smectites in sandstone reservoirs has been investigated using an Environmental Scanning Electron Microscope (ESEM). The ESEM enabled the illite/smectites to be directly observed in situ at high magnification during freshwater immersion, and was also particularly effective in allowing the same selected illite/smectite areas to be closely compared before and after freshwater treatments. The tendency of authigenic smectite-rich illite/smectite to swell on contact with fresh water varies greatly. Smectite-rich illite/smectite may osmotically swell to many times its original volume to form a gel which greatly reduces porosity and permeability, or may undergo only a subtle morphological change which has little or no adverse effect on reservoir quality. Authigenic illite-rich illite/smectite in sandstones does not swell when immersed in fresh water. Even after prolonged soaking in fresh water, illite-rich illite/smectite particles retain their original morphology. Accordingly, illite-rich illite/smectite in sandstones is unlikely to cause formation damage if exposed to freshwater-based fluids. © 1993.
Resumo:
The verdine facies of coastal marine tropical sediments shows a common variety characterized by a 1:1 newly-discovered dioctahedral-trioctahedral mineral. Although sometimes nearly pure, this mineral is generally admixed with a chlorite, a pyrophyllite, and a 7/14 Å mixed-layer. The rare variety is mostly composed of a green component intermediate between a smectite and a swelling chlorite. There is an abridged English version. -English summary
Resumo:
HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.
Resumo:
Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.
Resumo:
We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study aims to assess whether the smectite-rich Cochin and Mangalore clays, which were deposited in a marine medium and subsequently uplifted, exhibit consistency limits response typical of expanding lattice or nonexpanding (fixed) lattice-type clays on artificially changing the chemical environment. The chemical and engineering behaviors of Cochin and Mangalore marine clays are also compared with those of the smectite-rich Ariake Bay marine clay from Japan. Although Cochin, Mangalore, and Ariake clays contain comparable amounts of smectite (32-45%), Ariake clay exhibits lower consistency limits and much higher ranges of liquidity indices than the Indian marine clays. The lower consistency limits of the Ariake clay are attributed to the absence of well-developed, long-range, interparticle forces associated with the clay. Also, Ariake clay exhibits a significantly large (48-714 times) decrease in undrained strength on remolding in comparison to Cochin and Mangalore clays (sensitivity ranges between 1 and 4). A preponderance of long-range, interparticle forces reflected in the high consistency limits of Cochin and Mangalore clays (wL range from 75 to 180%) combined with low natural water contents yield low liquidity indices (typically <1) and high, remolded, undrained strengths and are considered to be responsible for the low sensitivity of the Indian marine clays.
Resumo:
Water-rock reactions are driven by the influx of water, which are out of equilibrium with the mineral assemblage in the rock. Here a mass balance approach is adopted to quantify these reactions. Based on field experiments carried out in a granito-gneissic small experimental watershed (SEW), Mule Hole SEW (similar to 4.5 km(2)), quartz, oligoclase, sericite, epidote and chlorite are identified as the basic primary minerals while kaolinite, goethite and smectite are identified as the secondary minerals. Observed groundwater chemistry is used to determine the weathering rates, in terms of `Mass Transfer Coefficients' (MTCs), of both primary and secondary minerals. Weathering rates for primary and secondary minerals are quantified in two steps. In the first step, top red soil is analyzed considering precipitation chemistry as initial phase and water chemistry of seepage flow as final phase. In the second step, minerals present in the saprolite layer are analyzed considering groundwater chemistry as the output phase. Weathering rates thus obtained are converted into weathering fluxes (Q(weathering)) using the recharge quantity. Spatial variability in the mineralogy observed among the thirteen wells of Mule Hole SEW is observed to be reflected in the MTC results and thus in the weathering fluxes. Weathering rates of the minerals in this silicate system varied from few 10 mu mol/L (in case of biotite) to 1000 s of micromoles per liter (calcite). Similarly, fluxes of biotite are observed to be least (7 +/- 5 mol/ha/yr) while those of calcite are highest (1265 791 mol/ha/yr). Further, the fluxes determined annually for all the minerals are observed to be within the bandwidth of the standard deviation of these fluxes. Variations in these annual fluxes are indicating the variations in the precipitation. Hence, the standard deviation indicated the temporal variations in the fluxes, which might be due to the variations in the annual rainfall. Thus, the methodology adopted defines an inverse way of determining weathering fluxes, which mainly contribute to the groundwater concentration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeong-san River, while those in the southern part are of multi-origin.