991 resultados para chemokine receptors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemokine receptor, CCR5, is a G protein coupled receptor responsible for some of the effects of the chemokines CCL3, CCL4 and CCL5. It is also one of the co-receptors for the entry of human immunodeficiency virus-1 (HIV-1) into cells. Regulation of CCR5 number on cells is, therefore, important for determining the infection rate by HIV-1. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4+ T cells. We now show that HIV-1 latency can be established in resting CD4+ T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4+ T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4+ T cells during normal chemokine-directed recirculation of CD4+ T cells between blood and tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disturbed cytokinechemokine network could play an important role in the onset of diseases with inflammatory processes such as chronic idiopathic urticaria (CIU). Our main objectives were to evaluate the relation between proinflammatory chemokine serum levels from CIU patients and their response to autologous skin test (ASST) and basophil histamine release (BHR). We also aimed to assess the chemokine secretion by peripheral blood mononuclear cells (PBMC) upon polyclonal stimulus and to evaluate chemokine CC ligand 2/C-X-C chemokine 8 (CCL2/CXCL8) and Toll-like receptor-4 (TLR-4) expression in monocytes. We observed significantly higher serum levels of the CXCL8, CXCL9, CXCL10 and CCL2 in CIU patients compared to the healthy group, regardless of the BHR or ASST response. The basal secretion of CCL2 by PBMC or induced by Staphylococcus aureus enterotoxin A (SEA) was higher in CIU patients than in the control group, as well as for CXCL8 and CCL5 secretions upon phytohaemagglutinin stimulation. Also, up-regulation of CCL2 and CXCL8 mRNA expression was found in monocytes of patients upon SEA stimulation. The findings showed a high responsiveness of monocytes through CCL2/CXCL8 expression, contributing to the creation of a proinflammatory environment in CIU.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results: Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2-6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions: Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition of bacterial lipopolysaccharide (LPS) by the innate immune system involves at least three receptor molecules: CD14, TLR4 and MD-2. Additional receptor components such as heat shock proteins, chemokine receptor 4 (CXCR4), or CD55 have been suggested to be part of this activation cluster; possibly acting as additional LPS transfer molecules. Our group has previously identified CXCR4 as a component of the "LPS-sensing apparatus". In this study we aimed to elucidate the role that CXCR4 plays in innate immune responses to LPS. Here we demonstrate that CXCR4 transfection results in responsiveness to LPS. Fluorescence correlation spectroscopy experiments further showed that LPS directly interacts with CXCR4. Our data suggest that CXCR4 is not only involved in LPS binding but is also responsible for triggering signalling, especially mitogen-activated protein kinases in response to LPS. Finally, co-clustering of CXCR4 with other LPS receptors seems to be crucial for LPS signalling, thus suggesting that CXCR4 is a functional part of the multimeric LPS "sensing apparatus".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemokines are a superfamily of small chemotactic cytokines, which interact with their G-protein-coupled receptors. These interactions regulate multiple physiological functions, particularly tissue architecture and compartment-specific migration of white blood cells. It has been found that the chemokine/chemokine receptor system has been utilized by cancer cells for migration and metastasis. The chemokine receptor CCR6 is expressed in colorectal cancer and several other cancer types, and stimulation by its physiological chemokine ligand CCL20 has been reported to promote cancer cell proliferation and migration in vitro. Moreover, CCR6/CCL20 interactions apparently play a role in organ selective liver metastasis of colorectal cancer. Here, we review the literature on expression patterns of CCL20 and CCR6 and their physiological interactions as well as the currently presumed role of CCR6 and CCL20 in the formation of colorectal cancer liver metastasis, providing a potential basis for novel treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is not known how naive B cells compute divergent chemoattractant signals of the T-cell area and B-cell follicles during in vivo migration. Here, we used two-photon microscopy of peripheral lymph nodes (PLNs) to analyze the prototype G-protein-coupled receptors (GPCRs) CXCR4, CXCR5, and CCR7 during B-cell migration, as well as the integrin LFA-1 for stromal guidance. CXCR4 and CCR7 did not influence parenchymal B-cell motility and distribution, despite their role during B-cell arrest in venules. In contrast, CXCR5 played a nonredundant role in B-cell motility in follicles and in the T-cell area. B-cell migration in the T-cell area followed a random guided walk model, arguing against directed migration in vivo. LFA-1, but not α4 integrins, contributed to B-cell motility in PLNs. However, stromal network guidance was LFA-1 independent, uncoupling integrin-dependent migration from stromal attachment. Finally, we observed that despite a 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-cell screening of antigen-presenting cells. Our data provide an overview of the contribution of prototype GPCRs and integrins during naive B-cell migration and shed light on the local chemokine availability that these cells compute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The C-C chemokine receptor 5 (CCR5) plays a crucial role in facilitating the entry of macrophage-tropic strains of the HIV-1 into cells, but the mechanism of this phenomenon is completely unknown. To explore the role of CCR5-derived signal transduction in viral entry, we introduced mutations into two cytoplasmic domains of CCR5 involved in receptor-mediated function. Truncation of the terminal carboxyl-tail to eight amino acids or mutation of the highly conserved aspartate-arginine-tyrosine, or DRY, sequence in the second cytoplasmic loop of CCR5 effectively blocked chemokine-dependent activation of classic second messengers, intracellular calcium fluxes, and the cellular response of chemotaxis. In contrast, none of the mutations altered the ability of CCR5 to act as an HIV-1 coreceptor. We conclude that the initiation of signal transduction, the prototypic function of G protein coupled receptors, is not required for CCR5 to act as a coreceptor for HIV-1 entry into cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cell’s ability to effectively communicate with a neighboring cell is essential for tissue function and ultimately for the organism to which it belongs. One important mode of intercellular communication is the release of soluble cyto- and chemokines. Once secreted, these signaling molecules diffuse through the surrounding medium and eventually bind to neighboring cell’s receptors whereby the signal is received. This mode of communication is governed both by physicochemical transport processes and cellular secretion rates, which in turn are determined by genetic and biochemical processes. The characteristics of transport processes have been known for some time, and information on the genetic and biochemical determinants of cellular function is rapidly growing. Simultaneous quantitative analysis of the two is required to systematically evaluate the nature and limitations of intercellular signaling. The present study uses a solitary cell model to estimate effective communication distances over which a single cell can meaningfully propagate a soluble signal. The analysis reveals that: (i) this process is governed by a single, key, dimensionless group that is a ratio of biological parameters and physicochemical determinants; (ii) this ratio has a maximal value; (iii) for realistic values of the parameters contained in this dimensionless group, it is estimated that the domain that a single cell can effectively communicate in is ≈250 μm in size; and (iv) the communication within this domain takes place in 10–30 minutes. These results have fundamental implications for interpretation of organ physiology and for engineering tissue function ex vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid μ and δ receptors) mediated chemotaxis; the β2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the μ-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two βγ sequestering proteins (βARK-ct and αt) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free βγ subunits.