987 resultados para chemical bonds


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The field of education is very rich and allows us to research in various aspects. The area of chemical education has been growing more and more, and an important aspect that has been researching this area is about the learning difficulties of students. The approach of the themes atomic structure and chemical bonds are developed in high school and have many problems that are often brought to higher education becoming an obstacle to the advancement of learning. It is necessary for these initial themes - the atomic structure and chemical bonds - are well understood by the student to the other contents of Chemistry will be understood more easily. This paper aims to describe, analyze errors and difficulties presented in the assessments of the discipline Atomic and Molecular Architecture, the students of the degree course in Chemistry - EAD, with respect to the contents of " Atomic Structure and Chemical Bonding ", by of the assessments made by the students and the Virtual Learning Environment (VLE), taking into account the activities , discussion forum and access to materials . AVA allows obtaining reports which were used to analyze regarding access / participation to assess their contribution to learning and its relation to the final result (pass / fail). It was observed that the most frequent errors in the assessments are related to the early part of the chemistry that is the understanding of atomic structure and evolution models. Students who accessed the extra material and participated in the activities and forums were students who achieved success in the course. Ie, the difficulties were emerging and the use of available teaching strategies, students could minimize such difficulties, making their performance in activities and assessments were better. Was also observed by attending the AVA, the discipline began with a large withdrawal from the page access as well as the frequency of face- evidence from observation in Listing presence of classroom assessments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extended X-ray absorption fine spectroscopy (EXAFS) and Raman scattering studies of InF3-BaF2 and InF3-SrF2 binary glasses are reported. For all compositions, the local structure of the glasses is built with InF6 units. For all glasses studied, the indium neighbour's number and the In-F mean bond length are equal to the values of the InF3 crystalline phase (6 and 0.205 nm, respectively). © 1996 Chapman & Hall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two groups of hybrid organic-inorganic composites exhibiting ionic conduction properties, so called ORMOLYTES (organically modified electrolytes), have been prepared by the sol-gel process. The first group has been prepared from mixture of a lithium salt and 3-isocyanatopropyltriethoxysilane(IsoTrEOS),O,O′-bis(2-aminopropyl) polypropyleneglycol. These materials produce chemical bonds between the organic (polymer) and the inorganic (silica) phases. The second group has been prepared by an ultrasonic method from a mixture of tetraethoxysilane (TEOS), polypropyleneglycol and a lithium salt. The organic and inorganic phases are not chemically bonded in these samples. The Li+ ionic conductivity, σ, of all these materials has been studied by AC impedance spectroscopy up to 100°C. Values of σ up to 10-6 Ω-1·cm-1 have been found at room temperature. A systematic study of the effects of lithium concentration, polymer chain length and the polymer to silica weight ratio on σ shows that there is a strong dependence of σ on the preparation conditions. The dynamic properties of the Li+ ion and the polymer chains as a function of temperature between -100 and 120°C were studied using 7Li solid-state NMR measurements. The ionic conductivity of both families are compared and particular attention is paid to the nature of the bonds between the organic and inorganic components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared and photoluminescence spectroscopies have been used to investigate the local environment of the Eu3+ ions in luminescent sol-gel derived materials-di-ureasils-based on a hybrid framework represented by U(600). This host is composed of a siliceous backbone grafted, through urea cross-links, to both ends of polymer segments incorporating 8.5 oxyethylene repeat units. The active centers have been introduced as europium perchlorate, Eu(ClO4)3. Samples with compositions n = 232, 62, 23, 12, and 6 (where n denotes the ratio of (OCH2CH2) moieties per lanthanide ion) have been examined. The combination of the information retrieved from the analysis of characteristic bands of the FTIR spectra-the perchlorate and the Amide I/Amide II features-with that obtained from the photoluminescence data demonstrates that at compositions n = 232 and 62 the anions are free, whereas the Eu3+ ions are complexed by the heteroatoms of the polyether chains. At higher salt concentration, the cations are bonded, not only to the ClO4 - ions, but also to the ether oxygen atoms of the organic segments and to the carbonyl oxygen atoms of the urea linkages. The dual behavior of U(600) with respect to cation coordination has been attributed to the presence in this nanohybrid of strong hydrogen-bonded urea-urea structures, which, at low salt content, cannot be disrupted, thus inhibiting the formation of Eu3+-O=C(urea) contacts and promoting the interaction between the lanthanide ions and the (OCH2CH2) moieties. The present work substantiates the claim that the activation of the coordinating sites of the di-ureasil framework can be tuned by varying either the guest salt concentration at constant chain length or the length of the.organic segments at constant salt concentration. This relevant property opens challenging new prospects in the fields of application of this class of hybrids. © 2001 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin polymer films were deposited from acetylene and argon mixtures by plasma immersion ion implantation and deposition. The effect of the pulse frequency, v, on molecular structure, optical gap, contact angle and hardness of the films was investigated. It was observed progressive dehydrogenation of the samples and increment in the concentration of unsaturated carbon bonds as the pulse frequency was increased. Film hardness and contact angle increased and optical gap decreased with v. These results are interpreted in terms of the chain unsaturation and crosslinking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different (Sn,Ti)O2 compositions were sintered at 1450 °C for 2 h with the purpose of investigating their sintering and mass transport properties. Highly dense ceramics were obtained and their structural properties studied by X-ray diffraction and scanning electron microscopy. The changes in lattice parameters were analyzed by the Rietveld method and two mass transport mechanisms were observed during sintering in different temperature ranges, evidenced by the linear shrinkage rate as a function of temperature. The effect of the concentration of TiO2 on mass transport and densiffication during sintering was analyzed by considering the intrinsic defects. System densiffication was attributed to a mass transport mechanism in the SnO2 matrix, caused by the presence of TiO2, which formed a solid solution phase. The change in the mass transport mechanism was attributed to chemical bonding between SnO2 and TiO2, which improves ionic difusion as the concentration of TiO2 increased in (Sn,Ti)O2 compositions. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear absorption measurements were performed on fluorophosphate glasses with high concentration of tungsten oxide. Large two-photon absorption coefficients, α2, were determined at 660 nm using nanosecond laser pulses. It was observed that α2 increases for increasing tungsten oxide concentrations and therefore the optical limiting performance of this new glass composition can be controlled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The purpose of the this study was to evaluate the influence of thermocycling on shear bond strength on bovine enamel and dentin surfaces of different adhesive systems. Methods: Thirty sound bovine incisors were sectioned in mesiodistal and inciso-cervical direction obtaining 60 incisal surfaces (enamel) and 60 cervical surfaces (dentin). Specimens were randomly assigned to 3 groups of equal size (n = 40), according to the adhesive system used: I-Single Bond; II-Prime & Bond NT/NRC; III-One Coat Bond. After 24-h storage in distilled water at 37 o C, each main group was divided into two subgroups: A- specimens tested after 24 h storage in distilled water at 37°C; B - specimens submitted to thermocycling (500 cycles). Shear bond strength tests were performed. Data were submitted to ANOVA and Tukey test. Results: Means (MPa) of different groups were: I-AE-16.96, AD-17.46; BE-21.60, BD-12.79; II-AE-17.20, AD-11.93; BE-20.67, BD-13.94; III-AE-25.66, AD-17.53; BE-24.20, BD-19.38. Significance: Thermocycling did not influence significantly the shear bond strength of the tested adhesive systems; enamel was the dental substrate that showed larger adhesive strength; One Coat Bond system showed the best adhesive strength averages regardless of substrate or thermocycling. © 2005 Springer Science + Business Media, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visible photoluminescence was generated in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The broad emission band maximum shows a linear dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. The photoluminescence was attributed to defect generation related to unsatisfied chemical bonds due to the high surface area. Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that the powder is composed by nanocrystallites with about 10-20 nanometers immersed in an amorphous media.